首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary 2.4-dichlorophenoxyacetic acid (2.4-D) and (2-chloroethyl)-trimethylammonium chloride (CCC) inhibit chlorophyll synthesis and protochlorophyllide 652 regeneration in 6–8 day old barley leaves whilst having little effect on the rates of protochlorophyll 632 synthesis from exogenous -aminelevulinic acid (ALA) and ALA-dehydratase activity. Longer pretreatments with 2.4-D and CCC show it is only after 50 to 60 hr that the rates of P632 production from exogenous ALA and ALA-dehydratase activity are affected. Similar response times were obtained for chloramphenicol (CAP). The results indicate that 2.4-D and CCC may act by directly inhibiting specific plastid-protein synthesis similar to CAP. Hence it seems that it is only those proteins (enzymes) having a rapid turnover that are affected first i.e. the enzymes necessary for ALA synthesis in the plastid.Abbreviations used ALA -aminolevulinic acid - CAP chloramphenicol - CCC (2-chloroethyl)-trimethylammonium chloride - 2.4-D 2-4-dichlorophenoxyacetic acid - P652 prodochlorophyllide with maximum in-vivo absorption at 652 nm - P684 chlorophyllide absorbing at 684 nm - P670 chlorophyllide absorbing at 670 nm - P632 pigment absorbing at 632 nm synthesised from exogenous ALA - PBG Porphobilinogen P. R. Shewry is in receipt of a Science Research Council Studentship award.  相似文献   

2.
3.
The relationship of GA to apical dominance in Coleus was examinedby substituting 1 % IAA, in lanolin, for the shoot apex of CCC-treated,control and GA-treated plants containing, theoretically, hyponormal,normal and hypernormal GA levels, respectively. The greatestinhibition of lateral bud growth was obtained in the treatmentcombining 1 % IAA and 100 ppm GA, suggesting that GA may beimportant in the apical dominance of Coleus. CCC inhibited main axis growth, reduced the level of endogenousGA and caused a marked release of lateral buds from apical dominance. The significant stimulation of lateral bud growth by CCC couldnot be ascribed to reduced endogenous GA since it was not reversedby exogenous GA, or by GA plus IAA, whereas 100 ppm GA overcamethe inhibition of main axis growth by CCC. It was also shownthat the CCC stimulation was not a result of compensatory growth,that is, enhanced lateral bud growth resulting from reducedapical bud growth. The CCC effect on lateral buds was interpretedas involving a system independent of auxin and GA or else apossible immobilization of auxin in addition to inhibition ofGA biosynthesis. (Received December 5, 1967; )  相似文献   

4.
Barley (Hordeum vulgare L. C.I.666) was shown to be susceptibleto the growth retardant (2-chloroethyl)-trimethylammonium chloride(CCC). The estimation of cell number in the dwarfed third leafblade indicated that a decrease in mitotic activity had occurredin treated plants. There was also a decrease in cell size intreated plants. The dwarfing action of CCC was reversed by exogenousgibberellic acid (GA3) but this was shown to be the result ofincreased cell elongation only. GA3 did not promote cell divisionin healthy or CCC-treated plants. Assay of endogenous gibberellinsshowed a significant reduction in the level of a substance correspondingto GA3 in CCC-treated plants. It is suggested that CCC-induceddwarfing of barley is largely the result of a reduction in meristematicactivity. This may be related to an effect on gibberellin biosynthesisbut is not reversed by the application of exogenous GA 3.  相似文献   

5.
Carotenoid content of tobacco tissue grown in suspension culture was significantly affected by 2 mg . 1-1 I-naphthaleneacctic acid (NAA) and 500 mg . 1-1 (2-chloroethyl)-trimethyl-ammonium chloride (CCC). CCC caused a 4-fold increase of carotenoid concentration in the tissue and a 2-fold increase of carotenoid accumulation per one cultural flask mainly due to the appearance of significant amounts of lycopene. In the absence of NAA the tissue contained a much smaller amount of carotenoids and CCC failed to induce lycopene accumulation.  相似文献   

6.
7.
8.
Apical buds ofChenopodium rubrum from plants treated with CCC contain more endogenous auxins than buds from control plants, the level of these compounds increasing with the application of rising concentrations of the retardant. An especially marked increase was observed in the level of substance “X” which on chromatographic separation runs in the zone of tryptamine or its derivative. Since it has been shown in previous experiments that the inhibitory effect of CCC on flowering ofChenopodium rubrum may be reversed by indole-3-acetic acid (IAA) it is believed that the increase in auxins after application of CCC does not concern biologically active substances immediately available to the plant. It seems more likely that inactive precursors are involved which cannot be converted to the active substance in the presence of CCC, possibly due to blocking of the pertinent enzyme. If we assume that the wheat coleoptile used in the auxin bioassay in our experiments contains the pertinent enzyme it might convert the inactive precursors to active substances and, therefore, exhibit a growth stimulation even though the substances concerned would not necessarily be active in the buds from which they were extracted.  相似文献   

9.
U rostliny krátkého dne Chenopodium rubrum L. se dá kvetení indukovat íty?mi 16hodinovými cykly tmy ji? 5 dní po vyklí?ení. Aplikace CCC v koncentraci 2.10-3mvpr?běhu indukce kvetení zadr?uje a toté? piatí pro GA3 i tehdy, je-li podáván ve velmi nízkých koncentracích (0,1 a? 0,01 mg/l). Av?ak sou?asná aplikace obou těchto látek v uvedených koncentracích vede k úplné reversi inhibice. Po p?enesení rostlin z média, obsahujícího CCC, na ?istý ?ivný roztok, inhibi?ní ú?inek CCC rychle zmizí a p?echází v slabou stimulaci. Na?e výsledky ukazují, ?e giberelin se zú?astňuje proces? kvetení i u rostliny krátkého dne.  相似文献   

10.
The effect of CCC and GA3 on the growth and development of spring wheat (Triticum aestivum L.) cultivated under predominantly red (500–700 nm) or blue (400–500 nm) light was investigated. Red light enhanced the development of wheat during the exponential phase of growth. This effect presumably implicated the promotion of gibberellin synthesis under red light. The strong inhibitory action of CCC under red light (the inhibition was lower under blue light) might be interpreted in a similar way. The growth became more intensive under blue light after caring and was accompanied by increased susceptibility to giberellic acid treatment.  相似文献   

11.
12.
13.
Exogenously supplied bovine haemin, fed to etiolated barley leaves, inhibited chlorophyll synthesis in leaves exposed to light. Haemin inhibited the regeneration of protochlorophyllide (P650) and the conversion of exogenously supplied δ-aminolaevulinate (ALA) to protochlorophyll (P630). The effect of haemin on chlorophyll production was overcome by incubating the leaves in water in the dark before light treatment, suggesting the operation of a rapid haem destruction mechanism in leaves. Protohaem turnover in dark-grown leaves was between 8 and 9 hr, based on the rate of degradation of erogenous haemin and the rate of protohaem breakdown in laevulinic acid (LA) treated leaves. The rate constant for haem destruction was 85 pmol/nmol/hr in the dark and 45 pmol/nmol/hr after 4 hr light. There was no evidence that light affects the synthesis of protohaem. It appears that the regulation of endogenous levels of protohaem is by breakdown and it is this mechanism which is under light control. Haem considerably decreased the incorporation of radioactivity from glycollate-[14C], glycine-[14C] and glutamate-[14C] into accumulated ALA in the presence of LA.  相似文献   

14.
Both benzyladenine (BA) and potassium (K) stimulated chlorophyll synthesis in cucumber ( Cucumus sativus L. cv. National Pickling) cotyledons. However, differences existed between the effects of BA and K. Stimulation of chlorophyll synthesis by BA (1 mg l−1, 4.4 μ M ) was observed in excised cotyledons after 4 and 8 h of illumination but not after 24 h, whereas the stimulation caused by K (40 m M ) continued. In contrast to BA, K was unable to eliminate the lag phase of chlorophyll production, and it also required light for its stimulation of cotyledon expansion. Both BA and K were required to maximize cotyledon expansion and chlorophyll production. In intact plants, K was not limiting for chlorophyll synthesis since foliar or soil pretreatments with K did not markedly stimulate greening. Foliar pretreatment with BA stimulated chlorophyll levels in intact plants, whereas soil pretreatment with BA inhibited chlorophyll production, probably because BA was not readily transported from the roots to the shoot and created a "sink" effect. Inhibitor studies showed that stimulation by K of greening did not depend on RNA or chloroplastic protein synthesis to the extent that has been reported for BA. Thus it appears that BA and K stimulate chlorophyll synthesis via different mechanisms, although both cytokinins and K are essential for maximum rates of greening.  相似文献   

15.
In our ongoing research program aimed at the optimization of microtubule-self-assembly disrupting agents, we have prepared three series of phenylurea analogues (CEU), derived from N-(3-ω-hydroxyalkyl or 4-ω-hydroxyalkyl or 3-ω-hydroxyalkynyl)-phenyl-N′-(2-chloroethyl)ureas. Most compounds exhibit potent growth inhibitory activity on human colon carcinoma HT-29, human skin melanoma M21, and human breast carcinoma MCF-7 tumor cell lines, with a GI50 ranging from 250 nM to 8 μM. Among these new molecules, three CEUs exhibit GI50 in the nanomolar range. They are more potent by approximately an order of magnitude than previously described CEU analogues. As such, they are attractive hit compounds for the development of potent new alkylating antitubulin drugs.  相似文献   

16.
Mercury (0.01-1.0 mM) inhibited chlorophyll formation in greening maize leaf segments. However, supplementing incubation medium with 2-oxoglutarate, maintained substantially higher level of chlorophyll in absence of metal after an initial period of 8 hr. On preincubation of leaf segments with HgCl2, per cent inhibition of chlorophyll synthesis by metal was same in the presence and absence of 2-oxoglutarate. Supply of 2-oxoglutarate (0.1-10.0 mM) exerted concentration dependent effect on chlorophyll formation in absence or presence of metal. Increase in delta-amino levulinic acid dehydratase as well as NADH-glutamate synthase activity and decrease in NADH-glutamate dehydrogenase activity by 2-oxoglutarate in the presence of Hg suggested that glutamate for delta-amino levulinic acid synthesis could be made available from NH4+ assimilation via., glutamine synthetase/glutamate synthase pathway during mercury toxicity.  相似文献   

17.
18.
The application of CCC at concentrations inhibiting flowering ofChenopodium rubrum reduces the level of endogenous gibberellins in the apical buds of the plants. The effect of CCC may be reversed by appropriate concentrations of gibberellin (GA-), indole acetic acid (IAA) or kinetin. Kinetin applied to the apical bud during floral induction reduced the level of endogenous gibberellins similarly as CCC and if both CCC and kinetin were applied simultaneously their action was additive. On the other hand IAA applied under the same conditions increased the level of endogenous gibberellins and after joint application of CCC and IAA their level was the same as in untreated control plants. After application of CCC during floral induction the level of endogenous auxins did not change markedly but an active substance “x” appeared on the chromatograms of indole compounds. This substance was found also after simultaneous application of GA- and CCC but not after joint application of CCC and kinetin. If follows from our results that the same morphological phenomenon (flowering) can take place in plants considerably differing as to their level of endogenous growth substances. The ratio of different growth substances is obviously more important than the actual level of the single substances.  相似文献   

19.
In northern Sweden, plants growing in association with the clonal dwarf shrub Empetrum hermaphroditum usually exhibit limited growth and are N-depleted. Previous studies suggest that this negative effect by E. hermaphroditum may be explained, at least in part, by the release of phenolic compounds, particularly the dihydrostilbene, batatasin-III from foliage to soil. In the present work, we investigated whether batatasin-III has the potential to interfere with NH4+ uptake in birch (Betula pendula) roots. Excised birch roots were exposed to batatasin-III during brief periods in 15NH4+ solutions, and then analyzed for labeled N. Batatasin-III inhibited N-NH4+ uptake by 28, 89 and 95% compared with the control, when roots were treated with 0.1, 1.0 and 2.8 mM of batatasin-III, respectively. The effect of 1.0-mM batatasin-III was greater at pH 4.2 than at pH 6.8. In addition, the inhibition of N-NH4+ uptake by batatasin-III was not reversed after rinsing the roots in water and transferring them to a batatasin-III free solution. Furthermore, birch seedlings immersed in a 1.0-mM batatasin-III solution for 2 h, and then replanted in pots with soil, had decreased growth, such that 10 weeks after treatment, the dry mass of both shoots and roots was reduced by 74 and 73%, respectively, compared with control seedlings. This suggests that a brief exposure to batatasin-III may have a long-term inhibitory effect on whole plant growth. Using plasma membrane vesicles isolated from easily extractable spinach (Spinacia oleracea) leaves, it was found that batatasin-III strongly inhibited proton pumping in isolated plasma membrane vesicles, while it only slightly inhibited ATP hydrolytic activity. The uncoupling of proton pumping from ATP hydrolytic activity suggests that batatasin-III disturbs membrane integrity. This hypothesis was further supported by a greater efflux of ions from birch roots immersed in a batatasin-III solution than from roots in a control solution.  相似文献   

20.
The influence of GA and CCC on endogenous estrogens content in beans was investigated. The experiments were conducted in two variants analysing the amounts of estrogens 12, 24, 48, 96 h after application, and in the specific stages of plant development. The lack of influence of GA and the lowering of estrogens content under the influence of CCC was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号