首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell lines derived from the sphingomyelinosis (gene symbol, spm) mouse were established from homozygous (spm/spm) and heterozygous (spm/+) embryos according to a rigid 3T3 transfer schedule. The SPM-3T3 cells derived from a homozygous embryo showed extensive accumulation of intracellular cholesterol, attenuated esterification of exogenously added cholesterol and increased de novo cholesterol synthesis, when compared to SPMH-3T3 cells derived from a heterozygous embryo. The phenotypic abnormalities were very similar to those observed in fibroblasts from patients with Niemann-Pick disease type C (NP-C), in which a defect in the intracellular transport of unesterified cholesterol is suggested. The genetic defect in SPM-3T3 cells should be closely related to that in NP-C. The SPM-3T3 cell line is useful for biochemical and genetic studies on the regulation of intracellular cholesterol metabolism.  相似文献   

2.
Cholesterol accumulates to massive levels in cells from Niemann-Pick type C (NP-C) patients and in cells treated with class 2 amphiphiles that mimic NP-C disease. This behavior has been attributed to the failure of cholesterol released from ingested low density lipoproteins to exit the lysosomes. However, we now show that the rate of movement of cholesterol from lysosomes to plasma membranes in NP-C cells is at least as great as normal, as was also found previously for amphiphile-treated cells. Furthermore, the lysosomes in these cells filled with plasma membrane cholesterol in the absence of lipoproteins. In addition, we showed that the size of the endoplasmic reticulum cholesterol pool and the set point of the homeostatic sensor of cell cholesterol were approximately normal in NP-C cells. The plasma membrane cholesterol pools in both NP-C and amphiphile-treated cells were also normal. Furthermore, the build up of cholesterol in NP-C lysosomes was not a physiological response to cholesterol overload. Rather, it appeared that the accumulation in NP-C lysosomes results from an imbalance in the brisk flow of cholesterol among membrane compartments. In related experiments, we found that NP-C cells did not respond to class 2 amphiphiles (e.g. trifluoperazine, imipramine, and U18666A); these agents may therefore act directly on the NPC1 protein or on its pathway. Finally, we showed that the lysosomal cholesterol pool in NP-C cells was substantially and preferentially reduced by incubating cells with the oxysterols, 25-hydroxycholesterol and 7-ketocholesterol; these findings suggest a new pharmacological approach to the treatment of NP-C disease.  相似文献   

3.
A cell line (SPM-3T3) derived from a C57BL/ KsJ mouse model of Niemann-Pick disease type C (NP-C) shows biochemical abnormalities similar to those in fibroblasts derived from NP-C. Somatic cell hybridization analysis of the SPM-3T3 cells and five fibroblast strains derived from NP-C patients (four childhood cases and one adult case) was carried out. The criterion for complementation was the restoration of a normal intracellular fluorescent pattern in multinucleated cells stained with filipin to demonstrate cholesterol accumulation. These cells can be assigned to two complementation groups. The SPM-3T3 cells did not complement cell strains derived from childhood-type NP-C, while they complemented a cell strain derived from an adult patient. Our results suggest that SPM-3T3 represents a genetically authentic model of a major complementation group of NP-C, and that NP-C consists of genetically heterogeneous groups. Received: 5 March 1996  相似文献   

4.
Biochemical and cytochemical studies have revealed that abnormal processing of low-density-lipoprotein (LDL) cholesterol can be reversed in mutant Niemann-Pick C (NP-C) fibroblasts when 2% dimethyl sulfoxide (DMSO) is added to the culture medium. Both the excessive lysosomal accumulation of LDL cholesterol and the delayed induction of cellular homeostatic responses associated with the uptake of LDL by the mutant cells were substantially reversed by DMSO. DMSO appears to accelerate the intracellular mobilization of LDL-derived cholesterol through effects that may reflect enhanced membrane permeability or cholesterol solubilization.  相似文献   

5.
Mutations in the human NPC1 gene cause most cases of Niemann-Pick type C (NP-C) disease, a fatal autosomal recessive neurodegenerative disorder. NPC1 is implicated in intracellular trafficking of cholesterol and glycolipids, but its exact function remains unclear. The C. elegans genome contains two homologs of NPC1, ncr-1 and ncr-2, and an ncr-2; ncr-1 double deletion mutant forms dauer larvae constitutively (Daf-c). We have analyzed the phenotypes of ncr single and double mutants in detail, and determined the ncr gene expression patterns. We find that the ncr genes function in a hormonal branch of the dauer formation pathway upstream of daf-9 and daf-12, which encode a cytochrome P450 enzyme and a nuclear hormone receptor, respectively. ncr-1 is expressed broadly in tissues with high levels of cholesterol, whereas expression of ncr-2 is restricted to a few cells. Both Ncr genes are expressed in the XXX cells, which are implicated in regulating dauer formation via the daf-9 pathway. Only the ncr-1 mutant is hypersensitive to cholesterol deprivation and to progesterone, an inhibitor of intracellular cholesterol trafficking. Our results support the hypothesis that ncr-1 and ncr-2 are involved in intracellular cholesterol processing in C. elegans, and that a sterol-signaling defect is responsible for the Daf-c phenotype of the ncr-2; ncr-1 mutant.  相似文献   

6.
7.
Niemann-Pick type C (NP-C) disease is a fatal, autosomal recessive, childhood neurodegenerative disease. The NP-C mouse recapitulates the cholesterol and sphingolipid storage, onset of neurological deficits, histopathological lesions, Purkinje cell loss and early death typical of the most severe form of human NP-C. Neurosteroids, steroids made in the brain, affect neuronal growth and differentiation, and modulate neurotransmitter receptors. Disordered cholesterol trafficking might disrupt neurosteroidogenesis, thereby contributing to the NP-C phenotype. Here we show that NP-C mouse brain contains substantially less neurosteroid than wild-type brain and has an age-related decrease in the ability to synthesize 5alpha-dihydroprogesterone and allopregnanolone. Immunohistochemical assessment confirms a decrease in expression of 5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase, especially in cerebellum. Neonatal administration of allopregnanolone delays the onset of neurological symptoms, increases Purkinje and granule cell survival, reduces cortical GM2 and GM3 ganglioside accumulation and doubles the lifespan of NP-C mice. Earlier administration increases effectiveness of treatment. Decreased production of allopregnanolone apparently contributes to the pathology of NP-C; thus, neurosteroid treatment may be useful in ameliorating progression of the disease.  相似文献   

8.
Niemann-Pick type C (NP-C) disease is a progressive and fatal neuropathological disorder previously characterized by abnormal cholesterol metabolism in peripheral tissues. Although a defective gene has been identified in both humans and the npc(nih) mouse model of NP-C disease, how this leads to abnormal neuronal function is unclear. Here we show that whereas embryonic striatal neurons from npc(nih) mice can take up low density lipoprotein-derived cholesterol, its subsequent hydrolysis and esterification are significantly reduced. Given the importance of cholesterol to a variety of signal transduction mechanisms, we assessed the effect of this abnormality on the ability of these neurons to respond to brain-derived neurotrophic factor (BDNF). In contrast to its effects on wild type neurons, BDNF failed to induce autophosphorylation of the TrkB receptor and to increase neurite outgrowth in npc(nih) neurons, despite expression of TrkB on the cell surface. The results suggest that abnormal cholesterol metabolism occurs in neurons in the brain during NP-C disease, even at embryonic stages of development prior to the onset of phenotypic symptoms. Moreover, this defect is associated with a lack of TrkB function and BDNF responsiveness, which may contribute to the loss of neuronal function observed in NP-C disease.  相似文献   

9.
In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NPC mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.  相似文献   

10.
Niemann-Pick type C (NP-C) disease is a progressive neurodegenerative disorder characterized by the inappropriate accumulation of unesterified cholesterol in lysosomes [1]. NP-C patients show various defects including hepatosplenomegaly, ataxia, dystonia and dementia. Most cases of NP-C are associated with inactivating mutations of the NPC1 gene [2], which encodes a protein implicated in the retrograde transport of sterols and other cargo from lysosomes [3]. Furthermore, localization of the NPC1 protein to lysosomal/endosomal compartments is essential for proper transport [4]. To create a model of NP-C disease in a simple, genetically tractable organism, we generated deletion mutations in two Caenorhabditis elegans homologs of the human NPC1 gene, designated npc-1 and npc-2. Animals mutant for npc-1 developed slowly, laid eggs prematurely, and were hypersensitive to cholesterol deprivation. Furthermore, npc-1; npc-2 double-mutant animals inappropriately formed dauer larvae under favorable growth conditions. These phenotypes in C. elegans provide a model system for both genetic and chemical suppressor screening that could identify promising drug targets and leads for NP-C disease.  相似文献   

11.
Lipid movement between organelles is a critical component of eukaryotic membrane homeostasis. Niemann Pick type C (NP-C) disease is a fatal neurodegenerative disorder typified by lysosomal accumulation of cholesterol and sphingolipids. Expression of yeast NP-C-related gene 1 (NCR1), the orthologue of the human NP-C gene 1 (NPC1) defective in the disease, in Chinese hamster ovary NPC1 mutant cells suppressed lipid accumulation. Deletion of NCR1, encoding a transmembrane glycoprotein predominantly residing in the vacuole of normal yeast, gave no phenotype. However, a dominant mutation in the putative sterol-sensing domain of Ncr1p conferred temperature and polyene antibiotic sensitivity without changes in sterol metabolism. Instead, the mutant cells were resistant to inhibitors of sphingolipid biosynthesis and super sensitive to sphingosine and C2-ceramide. Moreover, plasma membrane sphingolipids accumulated and redistributed to the vacuole and other subcellular membranes of the mutant cells. We propose that the primordial function of these proteins is to recycle sphingolipids and that defects in this process in higher eukaryotes secondarily result in cholesterol accumulation.  相似文献   

12.
Niemann-Pick Disease Type C (NP-C) is a fatal neurodegenerative disease, which is biochemically distinguished by the lysosomal accumulation of exogenously derived cholesterol. Mutation of either the hNPC1 or hNPC2 gene is causative for NP-C. We report the identification of the yeast homologue of human NPC2, Saccharomyces cerevisiae Npc2p. We demonstrate that scNpc2p is evolutionarily related to the mammalian NPC2 family of proteins. We also show, through colocalization, subcellular fractionation, and secretion analyses, that yeast Npc2p is treated similarly to human NPC2 when expressed in mammalian cells. Importantly, we show that yeast Npc2p can efficiently revert the unesterified cholesterol and GM1 accumulation seen in hNPC2-/- patient fibroblasts demonstrating that it is a functional homologue of human NPC2. The present study reveals that the fundamental process of NPC2-mediated lipid transport has been maintained throughout evolution.  相似文献   

13.
Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.  相似文献   

14.
Niemann-Pick disease type C (NP-C) is a devastating, neurovisceral lysosomal storage disorder which is characterised by variable manifestation of visceral signs, progressive neuropsychiatric deterioration and premature death, caused by mutations in the NPC1 and NPC2 genes. Due to the complexity of diagnosis and the availability of an approved therapy in the EU, improved detection of NP-C may have a huge impact on future disease management. At the cellular level dysfunction or deficiency of either the NPC1 or NPC2 protein leads to a complex intracellular endosomal/lysosomal trafficking defect, and organ specific patterns of sphingolipid accumulation. Lysosphingolipids have been shown to be excellent biomarkers of sphingolipidosis in several enzyme deficient lysosomal storage disorders. Additionally, in a recent study the lysosphingolipids, lysosphingomyelin (SPC) and glucosylsphingosine (GlcSph), appeared to be elevated in the plasma of three adult NP-C patients. In order to investigate the clinical utility of SPC and GlcSph as diagnostic markers, an in-depth fit for purpose biomarker assay validation for measurement of these biomarkers in plasma by liquid chromatography-tandem mass spectrometry was performed. Plasma SPC and GlcSph are stable and can be measured accurately, precisely and reproducibly. In a retrospective analysis of 57 NP-C patients and 70 control subjects, median plasma SPC and GlcSph were significantly elevated in NP-C by 2.8-fold and 1.4-fold respectively. For miglustat-naïve NP-C patients, aged 2–50 years, the area under the ROC curve was 0.999 for SPC and 0.776 for GlcSph. Plasma GlcSph did not correlate with SPC levels in NP-C patients. The data indicate excellent potential for the use of lysosphingomyelin in NP-C diagnosis, where it could be used to identify NP-C patients for confirmatory genetic testing.  相似文献   

15.
16.
Understanding the molecular basis of Niemann-Pick C (NP-C) disease took decades of struggle. Here I describe our early efforts to unravel the complex lipid storage found in NP-C tissues, and how the mouse model for NP-C pointed us in the right direction. Our success in cloning the NP-C1 gene in 1997 can be attributed to collaboration between an international body of scientists and families coping with NP-C disease. The next challenge is to delineate the biological function of the NP-C1 protein.  相似文献   

17.
Niemann-Pick disease type C (NP-C) is a progressive, ultimately fatal, autosomal recessive neurodegenerative disorder. The major biochemical hallmark of the disease is the endocytic accumulation of low-density lipoprotein-derived cholesterol. The majority of NP-C patients have mutations in the Niemann-Pick type C1 gene, NPC1. This study focuses on the Saccharomyces cerevisiae homolog of the human NPC1 protein encoded by the NCR1 gene. Ncr1p localizes to the vacuole, the yeast equivalent to the mammalian endosome-lysosome system. Here, we identify the first phenotype caused by deletion of NCR1 from the yeast genome, resistance to the ether lipid drug, edelfosine. Our results indicate that edelfosine has a cytotoxic, rather than cytostatic, effect on wildtype yeast cells. We exploit the edelfosine resistance phenotype to assess the function of yeast Ncr1 proteins carrying amino acid changes corresponding to human NPC1 patient mutations. We find that one of these amino acid changes severely compromises Ncr1p function as assessed using the edelfosine resistance assay. These findings establish S. cerevisiae as a model system that can be exploited to analyze the molecular consequences of patient mutations in NPC1 and provide the basis for future genetic studies using yeast.  相似文献   

18.
19.
Enhanced apoD gene expression and abnormally high levels of apoD protein accumulation in the brain have been previously documented as features of the neurodegenerative disorder, Niemann-Pick Type C disease (NP-C). In the present study we have used immunocytochemistry and light and electron microscopy to elucidate the cellular and subcellular distribution of apoD in the Balb/c NIH npc1 ?/? mouse brain. The normal mouse brain demonstrates low levels of apoD-expressing glia particularly in the cerebellar white matter. In contrast, abundant, strongly apoD-immunolabeled cells were observed in select grey matter nuclei, including the globus pallidus, thalamus, and substantia nigra, and in white matter tracts within the internal capsule and cerebellum of NP-C mouse brain. These brains regions have been previously shown to display the most significant neurodegenerative changes in the NP-C mouse. Ultrastructural analysis revealed dense apoD immunoreactivity on the nuclear envelopes of cells that have the morphological features of oligodendrocyte precursor-like cells and light staining on astrocytes. These results define the cellular and subcellular pattern of expression of apoD in NP-C mouse brain and suggest a possible role for this lipocalin in the pathophysiology of this disorder.  相似文献   

20.
Niemann-Pick type C disease is characterized by the accumulation of cholesterol and other lipids within the lysosomal compartment, a process that is often accompanied by a reduction in acid sphingomyelinase activity. These studies demonstrate that a CHO cell mutant (CT-60), which accumulates lysosomal cholesterol because of a defective NP-C1 protein, has approximately 5-10% of the acid sphingomyelinase activity of its parental cell line (25-RA) or wild type (CHO-K1) cells. The cholesterol-induced reduction in acid sphingomyelinase activity can be reproduced in CHO-K1 cells by incubation in the presence of low density lipoprotein (LDL) and progesterone, which impairs the normal egress of LDL-derived cholesterol from the lysosomal compartment. Kinetic analysis of sphingomyelin hydrolysis in cell extracts suggests that the CT60 cells have a reduced amount of functional acid sphingomyelinase as indicated by a 10-fold reduction in the apparent V(max). Western blot analysis using antibodies generated to synthetic peptides corresponding to segments within the carboxyl-terminal region of acid sphingomyelinase demonstrate that both the CT60 and the LDL/progesterone-treated CHO-K1 cells possess near normal levels of acid sphingomyelinase protein. Likewise, Niemann-Pick type C fibroblasts also displayed normal acid sphingomyelinase protein but negligible levels of acid sphingomyelinase activity. These data suggest that cholesterol-induced inhibition is a posttranslational event, perhaps involving cofactor mediated modulation of enzymatic activity or alterations in acid sphingomyelinase protein trafficking and maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号