首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Staphylococcus epidermidis is a common pathogen in medical device-associated infections. Its major pathogenetic factor is the ability to form adherent biofilms. The polysaccharide intercellular adhesin (PIA), which is synthesized by the products of the icaADBC gene cluster, is essential for biofilm accumulation. In the present study, we characterized the gene locus inactivated by Tn917 insertions of two isogenic, icaADBC-independent, biofilm-negative mutants, M15 and M19, of the biofilm-producing bacterium S. epidermidis 1457. The insertion site was the same in both of the mutants and was located in the first gene, rsbU, of an operon highly homologous to the sigB operons of Staphylococcus aureus and Bacillus subtilis. Supplementation of Trypticase soy broth with NaCl (TSB(NaCl)) or ethanol (TSB(EtOH)), both of which are known activators of sigB, led to increased biofilm formation and PIA synthesis by S. epidermidis 1457. Insertion of Tn917 into rsbU, a positive regulator of alternative sigma factor sigma(B), led to a biofilm-negative phenotype and almost undetectable PIA production. Interestingly, in TSB(EtOH), the mutants were enabled to form a biofilm again with phenotypes similar to those of the wild type. In TSB(NaCl), the mutants still displayed a biofilm-negative phenotype. No difference in primary attachment between the mutants and the wild type was observed. Similar phenotypic changes were observed after transfer of the Tn917 insertion of mutant M15 to the independent and biofilm-producing strain S. epidermidis 8400. In 11 clinical S. epidermidis strains, a restriction fragment length polymorphism of the sigB operon was detected which was independent of the presence of the icaADBC locus and a biofilm-positive phenotype. Obviously, different mechanisms are operative in the regulation of PIA expression in stationary phase and under stress induced by salt or ethanol.  相似文献   

8.
Staphylococcus aureus infections can result in sepsis and septic shock associated with vascular damage and multiple organ failure. Apoptosis appears to play a key role during sepsis, and the ability of S. aureus to induce apoptosis in endothelial cells might contribute to metastatic infection. In contrast to leukocytes, in human umbilical vein endothelial cells and two endothelial cell lines neither purified alpha-toxin nor staphylococcal supernatants were sufficient to induce apoptosis. Apoptosis induction instead required staphylococcal invasion as well as signals from metabolically active intracellular staphylococci. Only strongly haemolytic and invasive staphylococci, but not non-invasive strains induced apoptosis that was caspase-dependent but Fas-independent. However, only a subgroup of clinical isolates with an invasive and haemolytic phenotype induced apoptosis. Expression of alpha-toxin in a non-haemolytic strain partially restored apoptosis induction, suggesting a role of alpha-toxin as a trigger of apoptosis. Furthermore, infection of endothelial cells with isogenic mutants of various regulator genes revealed that apoptosis induction was dependent on the global regulator agr and the alternative sigma factor sigB, but not influenced by sarA. Together, our results indicate that the ability of S. aureus to induce apoptosis in endothelial cells is determined by multiple virulence factors.  相似文献   

9.
10.
11.
12.
Subinhibitory concentrations of ciprofloxacin (CPX) raise the fibronectin-mediated attachment of fluoroquinolone-resistant Staphylococcus aureus by selectively inducing fnbB coding for one of two fibronectin-binding proteins: FnBPB. To identify candidate regulatory pathway(s) linking drug exposure to up-regulation of fnbB, we disrupted the global response regulators agr, sarA, and recA in the highly quinolone-resistant strain RA1. Whereas agr and sarA mutants of RA1 exposed to CPX still displayed increased adhesion to fibronectin, the CPX-triggered response was abolished in the uvs-568 recA mutant, but was restored following complementation with wild type recA. Steady-state levels of recA and fnbB, but not fnbA, mRNA were co-coordinately increased >3-fold in CPX-exposed strain RA1. Electrophoretic mobility shift assays revealed specific binding of purified S. aureus SOS-repressor LexA to recA and fnbB, but not to fnbA or rpoB promoters. DNase I footprint analysis showed LexA binding overlapping the core promoter elements in fnbB. We conclude that activation of recA and derepression of lexA-regulated genes by CPX may represent a response to drug-induced damage that results in a novel induction of a virulence factor leading to increased bacterial tissue adherence.  相似文献   

13.
14.
15.
16.
17.
AIMS: To characterize mutants of Staphylococcus aureus expressing reduced susceptibility to house cleaners (HC), assess the impact of the alternative sigma factor SigB on HC susceptibility, and determine the MIC of clinical methicillin-resistant S. aureus (MRSA) to a HC. METHODS AND RESULTS: Susceptibility to HC, HC components, H2O2, vancomycin and oxacillin and physiological parameters were determined for HC-reduced susceptibility (HCRS) mutants, parent strain COL and COLsigB::kan. HCRS mutants selected with three HC expressed reduced susceptibility to multiple HC, HC components, H2O2 and vancomycin. Two unique HCRS mutants also lost the methicillin resistance determinant. In addition, all HCRS mutants exhibited better growth at two temperatures, and one HCRS mutant expressed reduced carotenoid production. COLsigB::kan demonstrated increased susceptibility to all HC and many HC components. sigB operon mutations were not detected in one HCRS mutant background. Of 76 clinical MRSA, 20 exhibited reduced susceptibility to a HC. CONCLUSIONS: HCRS mutants demonstrate altered susceptibility to multiple antimicrobials. While sigB is required for full HC resistance, one HCRS mechanism does not involve sigB operon mutations. Clinical MRSA expressing reduced susceptibility to a common HC were detected. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that HCRS mutants are not protected against, nor selected by, practical HC concentrations.  相似文献   

18.
sigma B is a secondary sigma factor that controls the general stress response in Bacillus subtilis. sigma B-dependent genes are activated when sigma B is released from an inhibitory complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate pathways, responding either to a drop in intracellular ATP levels or to environmental stress (e.g., heat, ethanol, or salt), cause the release of sigma B from RsbW. rsbR, rsbS, rsbT, and rsbU are four genes now recognized as the upstream half of an operon that includes sigB (sigma B) and its principal regulators. Using reporter gene assays, we find that none of these four genes are essential for stationary-phase (i.e., ATP-dependent) activation of sigma B, but rsbU and one or more of the genes contained within an rsbR,S,T deletion are needed for stress induction of sigma B. In other experiments, Western blot (immunoblot) analyses showed that the levels of RsbR, RsbS, Rsb, and RsbU, unlike those of the sigB operon's four downstream gene products (RsbV, RsbW, RsbX and sigma B), are not elevated during sigma B activation. Gel filtration and immunoprecipitation studies did not reveal the formation of complexes between any of the four upstream sigB operon products and the products of the downstream half of the operon. Much of the detectable RsbR, RsbS, RsbT, and RsbU did, however, fractionate as a large-molecular-mass (approximately 600-kDa) aggregate which was excluded from our gel filtration matrix. The downstream sigB operon products were not present in this excluded material. The unaggregated RsbR, RsbS, and RsbU, which were retarded by the gel matrix, elated from the column earlier than expected from their molecular weights. The RsbR and RsbS fractionation profile was consistent with homodimers (60 and 30 kDa, respectively), while the RsbU appeared larger, suggesting a protein complex of approximately 90 to 100 kDa.  相似文献   

19.
In Staphylococcus aureus, enterotoxin B (SEB) is a superantigen that activates host interleukins and induces adverse responses, ranging from food poisoning to toxic shock. The alternate sigma factor, sigmaB (SigmaB), and agr are two known regulators of S. aureus. Northern blots of strain COL, a sigB-positive strain, showed an inverse correlation between sigmaB expression and seb message. seb expression was also measured as a function of a seb promoter linked to green fluorescent protein (GFP) expression in RN6390, COL, and Newman. In sigB mutants of RN6390, SH1000, COL, and Newman, seb promoter activities, as measured by GFP expression, increased relative to the respective parental types but at differing levels, suggesting alternate strain-specific regulation. In agr mutants of RN6390 and Newman, seb promoter activities were intermediate between the high level seen for the sigB mutant and the low level in the sigB active strains. A sigB agr double mutant of RN6390 displayed lower GFP expression than the agr mutant. These results suggest that while sigmaB and agr regulate seb expression in a divergent manner, other activator(s) of seb that depend on sigB expression may be present in S. aureus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号