首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Phosphorothioate oligodeoxynucleotides containing CpG motifs have immunostimulatory activity. Appropriate substitution of deoxynucleosides in the flanking region of CpG-containing phosphorothioate oligodeoxynucleotides with 2'-O-methylribonucleosides results in significant decreases or increases in their immunostimulatory activities. The results provide insights in how to chemically modify phosphorothioate oligodeoxynucleotides containing CpG motifs to suppress or enhance their immunostimulatory activity for different therapeutic uses.  相似文献   

2.
Bacterial DNA and synthetic oligodeoxynucleotides containing unmethylated CpG-motifs in a particular sequence context activate vertebrate immune cells. We examined the significance of negatively charged internucleoside linkages in the flanking sequences 5' and 3' to the CpG-motif on immunostimulatory activity. Cell proliferation and secretion of IL-12 and IL-6 in mouse spleen cell cultures, and spleen weights of mice increased significantly when a non-ionic linkage was placed at least four or more internucleoside linkages away from the CpG-motif in the 5'-flanking sequence. When the non-ionic linkage was placed closer than three internucleoside linkages in the 5'-flanking sequence to the CpG-motif, immunostimulatory activity was suppressed compared with that observed with the unmodified parent oligo. In general, the placement of non-ionic linkage in the 3'-flanking sequence to the CpG-motif either did not affect or slightly increased immunostimulatory activity compared with the parent oligo. These results have significance in understanding CpG oligonucleotide-receptor interactions and the development of potent immunomodulatory agents.  相似文献   

3.
Synthetic oligodeoxyribonucleotides containing CpG-dinucleotides (CpG DNA) in specific sequence contexts activate the vertebrate immune system. We have examined the effect of 3′-deoxy-2′–5′-ribonucleoside (3′-deoxynucleoside) incorporation into CpG DNA on the immunostimulatory activity. Incorporation of 3′-deoxynucleosides results in the formation of 2′5′-internucleotide linkages in an otherwise 3′–5′-linked CpG DNA. In studies, both in vitro and in vivo, CpG DNA containing unnatural 3′-deoxynucleoside either within the CpG-dinucleotide or adjacent to the CpG-dinucleotide failed to induce immunostimulatory activity, suggesting that the modification was not recognized by the receptors. Incorporation of the same modification distal to the CpG-dinucleotide in the 5′-flanking sequence potentiated the immunostimulatory activity of the CpG DNA. The same modification when incorporated in the 3′-flanking sequence had an insignificant effect on immunostimulatory activity of CpG DNA. Interestingly, substitution of a 3′-deoxynucleoside in the 5′-flanking sequence distal to the CpG-dinucleotide resulted in increased IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. The incorporation of the same modification in the 3′-flanking sequence resulted in lower IL-6 and IL-10 secretion with similar levels of IL-12 compared with parent CpG DNA. These results suggest that site-specific incorporation of 3′-deoxynucleotides in CpG DNA modulates immunostimulatory properties.  相似文献   

4.
Phosphorothioate oligodeoxynucleotides containing CpG motifs have immunostimulatory activity. Appropriate substitution of deoxynucleosides in the flanking region of CpG-containing phosphorothioate oligodeoxynucleotides with 2′-O-methylribonucleosides results in significant decreases or increases in their immunostimulatory activities. The results provide insights in how to chemically modify phosphorothioate oligodeoxynucleotides containing CpG motifs to suppress or enhance their immunostimulatory activity for different therapeutic uses.  相似文献   

5.
Oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotides within specific sequence contexts (CpG motifs) are detected, like bacterial or viral DNA, as a danger signal by the vertebrate immune system. CpG ODN synthesized with a nuclease-resistant phosphorothioate backbone have been shown to be potent Th1-directed adjuvants in mice, but these motifs have been relatively inactive on primate leukocytes in vitro. Moreover, in vitro assays that predict in vivo adjuvant activity for primates have not been reported. In the present study we tested a panel of CpG ODN for their in vitro and in vivo immune effects in mice and identified in vitro activation of B and NK cells as excellent predictors of in vivo adjuvant activity. Therefore, we tested >250 phosphorothioate ODN for their capacity to stimulate proliferation and CD86 expression of human B cells and to induce lytic activity and CD69 expression of human NK cells. These studies revealed that the sequence, number, and spacing of individual CpG motifs contribute to the immunostimulatory activity of a CpG phosphorothioate ODN. An ODN with a TpC dinucleotide at the 5' end followed by three 6 mer CpG motifs (5'-GTCGTT-3') separated by TpT dinucleotides consistently showed the highest activity for human, chimpanzee, and rhesus monkey leukocytes. Chimpanzees or monkeys vaccinated once against hepatitis B with this CpG ODN adjuvant developed 15 times higher anti-hepatitis B Ab titers than those receiving vaccine alone. In conclusion, we report an optimal human CpG motif for phosphorothioate ODN that is a candidate human vaccine adjuvant.  相似文献   

6.
7.
8.
9.
BackgroundDrug delivery to the brain is a major roadblock to treatment of Alzheimer's disease. Recent results of the PRIME study indicate that increasing brain penetration of antibody drugs improves Alzheimer's treatment outcomes. New approaches are needed to better accomplish this goal. Based on prior evidence, the hypothesis that glycan modification alters antibody blood-brain barrier permeability was tested here.MethodsThe blood-brain barrier permeability coefficient Pe of different glycosylated states of anti-amyloid IgG was measured using in vitro models of brain microvascular endothelial cells. Monoclonal antibodies 4G8, with sialic acid, and 6E10, lacking sialic acid, were studied. The amount of sialic acid was determined using quantitative and semi-quantitative surface plasmon resonance methods.ResultsInflux of IgG was not saturable and was largely insensitive to IgG species and glycosylation state. By contrast, efflux of 4G8 efflux was significantly lower than both albumin controls and 6E10. Removal of α2,6-linked sialic acid group present on 12% of 4G8 completely restored efflux to that of 6E10 but increasing the α2,6-sialylated fraction to 15% resulted in no change. Removal of the Fc glycan from 4G8 partially restored efflux. Alternate sialic acid groups with α2,3 and α2,8 linkages, nor on the Fc glycan, were not detected at significant levels on either 4G8 or 6E10.ConclusionsThese results support a model in which surface-sialylated 4G8 inhibits its own efflux and that of asialylated 4G8.General significanceGlycan modification has the potential to increase antibody drug penetration into the brain through efflux inhibition.  相似文献   

10.
The off-flavour development in soybean based food and oil industry is considered as a serious problem. In soybean three lipoxygenase isozymes namely LOX-1, LOX-2 and LOX-3 which contribute to about 1 % of storage protein have been reported and are the major culprits for the generation of volatile compounds causing the off-flavour. The present study showed that the 3 lipoxygenase isozymes isolated from defatted soybean flour exhibited inhibition potential by modulating the enzyme to substrate ratio. LOX-2 was the most inhibition prone enzyme. Defatting the flour may help in reducing off-flavour generation.  相似文献   

11.
《Epigenetics》2013,8(2):69-73
Clinical data provide evidence for the association of missplicing with methyl-binding protein mutations and inhibition of methylation. In this study, we analyzed a 373 human gene database containing a single alternatively spliced exon (cassette) and 1,039 constitutive introns, and showed that CpG frequencies are higher in alternative compared to constitutive introns, particularly in donors preceding cassette exons (p  相似文献   

12.
We tested the potential of CpG oligodeoxynucleotides (ODN) to reverse the increased susceptibility to allergic airways disease in neonatal mice in a model of maternal transmission of asthma risk. Offspring of OVA-sensitized and challenged BALB/c mother mice were subjected to an intentionally suboptimal sensitization protocol that has minimal effects on normal mice, but results in airway hyperresponsiveness (AHR) and airway inflammation (AI) in babies of asthmatic mother mice. We evaluated pulmonary function and AI in CpG- or control ODN-treated offspring. CpG treatment of neonates on day 4 of life prevents the AHR otherwise seen in this model (enhanced pause at 100 mg/ml methacholine: CpG, 0.9 +/- 0.1; ODN control, 3.8 +/- 0.6; n = 62; p < 0.005). It also prevented the development of AI, as evident in decreased bronchoalveolar lavage eosinophilia (CpG, 1.2 +/- 0.3%; ODN, 31.4 +/- 4.1%; n = 56; p < 0.005), diminished the severity of AI on histopathology, and resulted in lower IL-5 levels in bronchoalveolar lavage fluid. The effect of CpG persisted for at least 4-6 wk and was allergen independent. Treatment with CpG just before OVA aerosol challenge also prevented allergic responses. The data support the potential for immunomodulatory therapy with CpG in early life to reduce susceptibility to asthma.  相似文献   

13.
H Inoue  A Imura    E Ohtsuka 《Nucleic acids research》1985,13(19):7119-7128
Partially self-complementary dodecadeoxyribonucleotides containing a fluorescent nucleoside, 3-beta-D-2'-deoxyribofuranosyl-2, 7-dioxopyrido[2, 3-d]pyrimidine (pyridopyrimidine deoxynucleoside, dF) were synthesized by the phosphotriester solidphase method. A dodecanucleotide d(GGGAAFGTTCCC) pairing the analog and guanine at the centre of the chain showed a higher melting temperature than the corresponding G-C paired duplex. A similar comparison between A-T and A-F suggested that weaker hydrogen bonds exist when adenine and pyridopyrimidine residues are paired.  相似文献   

14.
15.
In the mammalian central nervous system, the neurotransmitter, glycine, acts both on an inhibitory, strychnine-sensitive receptor (GlyR) and an excitatory, strychnine-insensitive site at the NMDA receptor. Here we present electrophysiological evidence that the strychnine-sensitive glycine agonists, glycine and taurine, and the antagonist, strychnine, affect the endodermal rhythmic potential (RP) system and that the ectodermal contraction burst (CB) pacemaker system is modulated by glycine and strychnine in hydra. The RP and CB pacemaker systems are responsible for the respective elongation and contraction of hydra's body column. Activity of the CB system, quantified by the rate of contraction bursts (CBs), the number of pulses per contraction burst (P/CB), and the duration of bursts, was decreased by glycine. Glycine, coadministered with the strychnine-insensitive glycine site blocker, indole-2-carboxylic acid (I2CA), decreased RPs but not CBs or P/CB. The effect was mimicked by taurine. Strychnine increased the duration of RP production, and decreased CB duration. The effect of glycine with I2CA was counteracted by strychnine. The results support the idea that a vertebrate-like GlyR may be involved in modulating activity of the endodermal RP system and suggest that a glycine site on an NMDA receptor may be involved in the CB system.  相似文献   

16.
The replicative helicase for Escherichia coli is DnaB, a hexameric, ring-shaped motor protein that encircles and translocates along ssDNA, unwinding dsDNA in advance of its motion. The microscopic mechanisms of DnaB are unknown; further, prior work has found that DnaB's activity is modified by other replication proteins, indicating some mechanistic flexibility. To investigate these issues, we quantified translocation and unwinding by single DnaB molecules in three tethered DNA geometries held under tension. Our data support the following conclusions: 1), Unwinding by DnaB is enhanced by force-induced destabilization of dsDNA. 2), The magnitude of this stimulation varies with the geometry of the tension applied to the DNA substrate, possibly due to interactions between the helicase and the occluded ssDNA strand. 3), DnaB unwinding and (to a lesser extent) translocation are interrupted by pauses, which are also dependent on force and DNA geometry. 4), DnaB moves slower when a large tension is applied to the helicase-bound strand, indicating that it must perform mechanical work to compact the strand against the applied force. Our results have implications for the molecular mechanisms of translocation and unwinding by DnaB and for the means of modulating DnaB activity.  相似文献   

17.
CpG oligodeoxynucleotides (ODN) were identified that stimulated immunoglobulin production and cell proliferation in cotton rat cells in vitro. Three of these ODN were used as a mucosal adjuvant in the noses of cotton rats immunized via this route with respiratory syncytial virus fusion (F) protein. The CpG ODN markedly increased the cotton rat humoral neutralizing-antibody response to respiratory syncytial virus. Such immunized animals had a marked reduction in the production of infectious virus after a live-virus challenge. Animals immunized with the combination of F protein and CpG developed enhanced pulmonary pathology consisting of alveolitis and interstitial pneumonitis after a live-virus challenge. Similar enhanced disease has been seen in cotton rats and children immunized with formalin-inactivated respiratory syncytial virus.  相似文献   

18.
Oligonucleotides containing unmethylated CpG motifs (cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN)) are potent immunostimulatory agents capable of enhancing the Ag-specific Th1 response when used as immune adjuvants. We evaluated the cellular mechanisms responsible for this effect. Development of a CTL response was enhanced when mice were immunized with peptide-pulsed dendritic cells (DCs) treated with CpG ODN. However, in vitro, CpG ODN had no direct effect on highly purified T cells. In vitro, CpG ODN treatment of peptide- or protein-pulsed DCs enhanced the ability of the DCs to activate class I-restricted T cells. The presence of helper T cells enhanced this effect, indicating that treatment with CpG ODN does not obviate the role of T cell help. The enhanced ability of CpG ODN-treated DCs to activate T cells was present but blunted when DCs derived from IL-12 knockout mice were used. Fixation of Ag-pulsed, CpG ODN-treated DCs limited their ability to activate T cells. In contrast, fixation had little effect on DC activation of T cells when DCs were not exposed to CpG ODN. This indicates that production of soluble factors by DCs stimulated with CpG ODN plays a particularly important role in their ability to activate class I-restricted T cells. We conclude that CpG ODN enhances the development of a cellular immune response by stimulating APCs such as DCs, to produce IL-12 and other soluble factors.  相似文献   

19.
The interaction between the Rev protein of human immunodeficiency virus type 1 and its highly structured and conserved RNA target, the Rev-responsive element, is required for virus replication. We demonstrate that antisense oligodeoxynucleotide phosphorothioate analogs directed against the Rev-responsive element effectively inhibit Rev activity, as well as human immunodeficiency virus type 1 replication, and are candidates for antiviral therapy.  相似文献   

20.
Zhao W  Valencia AZ  Melby PC 《Cytokine》2006,34(5-6):243-251
The Syrian golden hamster (Mesocricetus auratus) is highly susceptible to a number of intracellular pathogens. Interferon-gamma (IFN-γ), the primary macrophage-activating cytokine, plays a key role in the host defense against intracellular pathogens. The hamster IFN-γ cDNA encodes a 174 amino acid protein that has an additional 17 amino acids at the carboxyl-terminus compared to IFN-γ of mice and rats. A homologous C-terminal tail is also found in other non-murine rodents. The biological activity of hamster IFN-γ had not been investigated previously so we first demonstrated the activity of native IFN-γ in assays of IFN-γ-induced receptor signaling and antiviral activity against vesicular stomatitis virus. We then tested the hypothesis that the C-terminal tail of hamster IFN-γ could influence its biological activity. A truncated hamster IFN-γ, in which the C-terminal 17 aa were removed by insertion of a stop codon at the position corresponding to the stop codon in the mouse sequence, had approximately 10-fold greater activity than the full length protein when measured in the two bioassays. Polyclonal and monoclonal anti-hamster IFN-γ antibodies specifically inhibited this biological activity. Collectively, these data indicate that this unique structural feature influences the biological activity of hamster IFN-γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号