共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A key characteristic of human language efficiency is that more frequently used words tend to be shorter in length—the ‘law of brevity’. To date, no test of this relationship between frequency of use and length has been carried out on non-human animal vocal communication. We show here that the vocal repertoire of the Formosan macaque (Macaca cyclopis) conforms to the pattern predicted by the law of brevity, with an inverse relationship found between call duration and rate of utterance. This finding provides evidence for coding efficiency in the vocal communication system of this species, and indicates commonality in the basic structure of the coding system between human language and vocal communication in this non-human primate. 相似文献
4.
5.
Mundy NI 《American journal of primatology》2006,68(6):559-567
The genes involved in olfactory communication in mammals via the vomeronasal system are summarized, and studies investigating these genes in primates are reviewed. Only five potentially functional vomeronasal receptor genes (V1RL s) have been found in humans, and only one of these (V1RL1) has been studied in other primates. V1RL1 has become a pseudogene repeatedly during primate evolution, but patterns of natural selection on primate V1RL genes demonstrate that this gene family diverged under natural selection throughout at least part of primate evolution. Evolution of the TRP2 gene, which encodes for an ion channel that is important in vomeronasal organ (VNO) signalling, strongly suggests that this signalling function was lost in ancestral Catarrhines. Overall, much work remains to be done to elucidate the repertoire of genes that are involved in pheromonal communication, particularly in Strepsirhines. Such studies promise unique insights into the evolution of this modality. 相似文献
6.
On encountering a predator, many species emit potentially riskyvocalizations known as alarm calls. We evaluated the relativeimportance of two adaptive hypotheses on the evolution of calling:(1) communicating to predators, which may function by deterringpursuit and hence increasing individual survival, and (2) analternative nepotistic hypothesis for alarm calling wherebycallers obtain direct and indirect fitness by warning relatives.Focusing on 209 species of rodents, we found significant associationsbetween diurnality and alarm calling, living socially and alarmcalling, and diurnality and sociality. Diurnality, however,accounted for nearly three times as much variation in whetheror not a species alarm called than did sociality. Phylogenetictests revealed that the evolution of diurnality preceded theevolution of alarm calling, and that the evolutions of diurnalityand sociality were unrelated. Our results are consistent withthe hypothesis that alarm communication evolved to communicateto predators. If so, then nepotistic benefits, although importantfor the maintenance of alarm calling in some rodents, may berelatively less important in its evolution. 相似文献
7.
Zuberbühler K 《Proceedings. Biological sciences / The Royal Society》2000,267(1444):713-718
West African Diana monkeys (Cercopithecus diana) and Campbell's monkeys (Cercopithecus campbelli) frequently form mixed-species associations. Males of both species produce acoustically distinct alarm calls to crowned eagles (Stephanoaetus coronalus) and leopards (Panthera pardus), two of their main predators. Field playback experiments were conducted to investigate whether Diana monkeys respond to Campbell's alarm calls and whether they understand the calls' semantic content. Diana monkeys responded to playback of Campbell's leopard or eagle alarm calls as though the original predator were present. In a second experiment, Diana monkeys were primed with either Campbell's eagle or leopard alarm calls and then subsequently probed with the vocalizations of a crowned eagle or a leopard. Results showed that monkeys used the semantic information conveyed by the Campbell's alarm calls to predict the presence of a predator. The data are consistent with the hypothesis that non-human primates are able to use acoustic signals of diverse origin as labels for underlying mental representations. 相似文献
8.
9.
While vocal learning has been studied extensively in birds and mammals, little effort has been made to define what exactly constitutes vocal learning and to classify the forms that it may take. We present such a theoretical framework for the study of social learning in vocal communication. We define different forms of social learning that affect communication and discuss the required methodology to show each one. We distinguish between contextual and production learning in animal communication. Contextual learning affects the behavioural context or serial position of a signal. It can affect both usage and comprehension. Production learning refers to instances where the signals themselves are modified in form as a result of experience with those of other individuals. Vocal learning is defined as production learning in the vocal domain. It can affect one or more of three systems: the respiratory, phonatory and filter systems. Each involves a different level of control over the sound production apparatus. We hypothesize that contextual learning and respiratory production learning preceded the evolution of phonatory and filter production learning. Each form of learning potentially increases the complexity of a communication system. We also found that unexpected genetic or environmental factors can have considerable effects on vocal behaviour in birds and mammals and are often more likely to cause changes or differences in vocalizations than investigators may assume. Finally, we discuss how production learning is used in innovation and invention, and present important future research questions. Copyright 2000 The Association for the Study of Animal Behaviour. 相似文献
10.
The social brain hypothesis proposes that large neocortex size in Homonoids evolved to cope with the increasing demands of complex group living and greater numbers of interindividual relationships. Group living requires that individuals communicate effectively about environmental and internal events. Recent data have highlighted the complexity of chimpanzee communication, including graded facial expressions and referential vocalizations. Among Hominoids, elaborate facial communication is accompanied by specializations in brain areas controlling facial movement. Finally, the evolution of empathy, or emotional awareness, might have a neural basis in specialized cells in the neocortex, that is, spindle cells that have been associated with self-conscious emotions, and mirror neurons that have recently been shown to activate in response to communicative facial gestures. 相似文献
11.
12.
An adult female olive baboon was paired with an adult male rhesus monkey in order to study interspecies social behavior. On the eleventh day of the pairing the subjects began reciprocal vocal communication which occurred in the context of appeasement. The sounds appear to contribute to a general reduction of tension between the two subjects. 相似文献
13.
In female-bonded primate species, females invest more time in grooming than males, and the majority of this grooming occurs in intra- rather than intersexual interactions. These clear sex differences in sociability reflect females' need to forge and maintain complex networks of social relationships with other females in the group. Increasing evidence indicates that vocal signals can have a similar function to grooming in mediating social interactions and relationships, and sex differences in patterns of use of vocal communication comparable to those seen for grooming might therefore be expected to occur. In this study of free-ranging adult rhesus macaques, we tested for such patterns, focusing on the frequency of utterance of three types of vocalisations given during close-range social interactions: coos, grunts, and girneys. As predicted, we found that females gave such calls significantly more frequently than males and also directed more of these vocalisations towards other females than to males; males' rate of vocalising towards the two sexes was not significantly different. To our knowledge, these results provide the first evidence for a sex difference in the rate of production of social vocalisations among adult nonhuman primates. The finding that increased sociability is associated with increased reliance on vocal communication may have important implications for theories of language evolution. 相似文献
14.
Vocal communication in nonhuman primates receives considerable research attention, with many investigators arguing for similarities between this calling and speech in humans. Data from development and neural organization show a central role of affect in monkey and ape sounds, however, suggesting that their calls are homologous to spontaneous human emotional vocalizations while having little relation to spoken language. Based on this evidence, we propose two principles that can be useful in evaluating the many and disparate empirical findings that bear on the nature of vocal production in nonhuman and human primates. One principle distinguishes production-first from reception-first vocal development, referring to the markedly different role of auditory-motor experience in each case. The second highlights a phenomenon dubbed dual neural pathways, specifically that when a species with an existing vocal system evolves a new functionally distinct vocalization capability, it occurs through emergence of a second parallel neural pathway rather than through expansion of the extant circuitry. With these principles as a backdrop, we review evidence of acoustic modification of calling associated with background noise, conditioning effects, audience composition, and vocal convergence and divergence in nonhuman primates. Although each kind of evidence has been interpreted to show flexible cognitively mediated control over vocal production, we suggest that most are more consistent with affectively grounded mechanisms. The lone exception is production of simple, novel sounds in great apes, which is argued to reveal at least some degree of volitional vocal control. If also present in early hominins, the cortically based circuitry surmised to be associated with these rudimentary capabilities likely also provided the substrate for later emergence of the neural pathway allowing volitional production in modern humans. 相似文献
15.
16.
C. Mello 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2002,188(11-12):943-959
Expression mapping of activity-dependent genes has been very useful to reveal brain activation patterns associated with specific stimuli or behavioral contexts. In addition, activity-induced neuronal gene expression is likely associated with neuronal plasticity and may be part of the mechanism(s) involved in long-term memory formation. Analysis of the immediate-early gene zenk has been used to generate high-resolution maps of brain activation associated with perceptual and motor aspects of vocal communication in songbirds and other avian groups. This molecular approach has generated novel insights into the organization of perceptual and motor control pathways for vocal communication in birds. Its impact on the neurobiology of birdsong will be reviewed here. Emphasis will be given to the caudomedial neostriatum, the area that shows the most robust zenk induction upon presentation of song to songbirds. Another focal point will be the comparative analysis of vocally induced zenk expression patterns across the avian orders that evolved vocal learning (i.e., songbirds, parrots, and hummingbirds). New research directions indicated by this molecular analysis will be discussed throughout. 相似文献
17.
Gustison ML le Roux A Bergman TJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1597):1847-1859
Primates are intensely social and exhibit extreme variation in social structure, making them particularly well suited for uncovering evolutionary connections between sociality and vocal complexity. Although comparative studies find a correlation between social and vocal complexity, the function of large vocal repertoires in more complex societies remains unclear. We compared the vocal complexity found in primates to both mammals in general and human language in particular and found that non-human primates are not unusual in the complexity of their vocal repertoires. To better understand the function of vocal complexity within primates, we compared two closely related primates (chacma baboons and geladas) that differ in their ecology and social structures. A key difference is that gelada males form long-term bonds with the 2-12 females in their harem-like reproductive unit, while chacma males primarily form temporary consortships with females. We identified homologous and non-homologous calls and related the use of the derived non-homologous calls to specific social situations. We found that the socially complex (but ecologically simple) geladas have larger vocal repertoires. Derived vocalizations of geladas were primarily used by leader males in affiliative interactions with 'their' females. The derived calls were frequently used following fights within the unit suggesting that maintaining cross-sex bonds within a reproductive unit contributed to this instance of evolved vocal complexity. Thus, our comparison highlights the utility of using closely related species to better understand the function of vocal complexity. 相似文献
18.
The gestural and tactile forms of communication using arms among the young and adult specimen of lower monkeys of subfamily Cercopithecoidea and higher monkeys of subfamily Hominioidea have been investigated. It has been concluded that gestures are the new form of phylogenesis in comparison with the contact patterns, their development is generally connected with the aggressive behaviour. The growing differentiation of gestures connected with the transition from participation of the whole arm to the leading role of the hand and finger gestures has been determined. The frequency of gestures is closely connected with the species structural organization and ecology. 相似文献
19.
Coevolution and maladaptation 总被引:2,自引:1,他引:2
Many of the most commonly cited examples of exquisite adaptationare of coevolved symbioses. As we learn more about the coevolutionaryprocess, however, it is becoming increasingly evident that coevolutionmay also keep populations moderately maladapted much of thetime. As a result, coevolving populations may only rarely occupyadaptive peaks, because the selective landscape is under continualchange through reciprocal selection on the species themselves.These shifting patterns of coadaptation are further shaped bythe geographic structure of most species. Selection mosaicsacross landscapes and coevolutionary hotspots can favor differentevolutionary trajectories in different populations. The combinedaction of gene flow, random genetic drift, and local extinctionof populations may then continually remold these local patterns,creating a geographic mosaic in the degrees of maladaptationfound within local interactions. Recent mathematical modelsof the geographic mosaic of coevolution suggest that complexmosaics of maladaptation are a likely consequence of spatiallystructured species interactions. These models indicate thatthe spatial structure of maladaptation may depend upon the typeof coevolutionary interaction, the underlying selection mosaic,and patterns of gene flow across landscapes. By maintaininglocal polymorphisms and driving the divergence of populations,coevolution may produce spatial patterns of maladaptation thatare a source of ongoing innovation and diversification in speciesinteractions. 相似文献
20.
Simply hearing the song produced by another bird of the same species triggers the regulation of microRNAs (miRNAs) in high-order auditory parts of the zebra finch brain. Some of the identified miRNAs appear to be unique to birds, possibly to songbirds. These findings, reported in BMC Genomics, highlight the complexities of gene regulation associated with vocal communication and point to possible key regulators of song-triggered gene networks. 相似文献