首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory subunits, p35 and p39, was investigated in rat brain from embryonic day 12 (E12) to postnatal 18 months (18M). The Cdk5 protein levels increased from E12 to postnatal day 7 (P7) and remained at this level until 18M. The Cdk5 kinase activity and the levels of both p35 mRNA and protein were low at E12, became prominent at E18-P14 but then decreased in the adult and aged rat brains of 3M to 18M. In comparison, the expression pattern of p39 appeared to have an inverse relationship to that of Cdk5 and p35. In regional distribution studies, p35 protein levels and Cdk5 kinase activity were significantly higher in the cerebral cortex and hippocampus, but lower in the cerebellum and striatum. These results suggested that Cdk5, p35 and p39 might have region-specific and developmental stage-specific functions in rat brain.  相似文献   

4.
5.
The specific activity of membrane-bound neuraminidase towards exogenously added gangliosides in the developing mouse brain was investigated. While whole brain was examined in fetuses, studies were carried out comparatively in cortex and cerebellum of postnatal stages. Considerable differences were found among brain areas. There was a rapid increase in forebrain neuraminidase activity before birth. This high level of activity was maintained throughout the first postnatal week, followed by a slow leveling-off to adult values on the 30th day. In the cerebellum a rapid increase in neuraminidase activity occurred between the 10th and 16th postnatal day. After having reached the maximum, enzyme activity declined rapidly, with adult values being reached on the 21st day. Neuraminidase activity in the adult cerebellum exceeds that in the cortex by 65.9 %. The results are discussed in reference to developmental changes in ganglioside metabolism and the possible involvement of neuraminidase in its regulation is pointed out.  相似文献   

6.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

7.
8.
9.
The expression of tau mRNA and of the corresponding encoded protein variants was studied during postnatal development in two brain regions differing in their timing of differentiation: the cerebral neocortex and the cerebellum. (a) The expression of tau mRNA was different in the two regions. Maximal contents were found at early stages in the cerebral neocortex, with a 10-fold decrease at later stages. In the cerebellum, two peaks of tau mRNA were observed soon after birth and in adulthood, with minimal values at postnatal day 6. (b) The expression of total tau proteins was similar to that of their encoding mRNAs in the cerebral neocortex, i.e., high concentrations after birth and low contents at later stages. In contrast, two peaks of tau proteins were observed in the cerebellum: the first perinatally and the second with a maximum at postnatal day 15. (c) Both in the cerebral neocortex and especially in the cerebellum, increasing concentrations of mature tau variants were expressed at late developmental stages, i.e., when total tau protein contents were decreased. In conclusion, the fluctuations in expression of tau and of its encoding mRNA seen in the cerebellum seem to reflect differences in the timing of differentiation of the various cell types, i.e., the macroneurons and the interneurons, present in this brain region. The adult tau variants appear in both the neocortex and the cerebellum only at late developmental stages, i.e., when most of the circuitry has been established, although these two regions markedly differ in their timing of differentiation.  相似文献   

10.
11.
12.
Rat acetyl-CoA transporter gene (Acatn) encodes a hydrophobic multi-transmembrane protein involved in the O-acetylation of gangliosides. O-acetylated gangliosides have been found to play important roles in the embryonic development of the nervous system. We have isolated rat Acatn cDNA by PCR cloning. The amino acid sequence of rat Acatn exhibited 92% and 96% homology with human and mouse sequences, respectively. The mRNA was expressed in brain at all developmental stages. Acatn expression was higher in embryonic and postnatal rats than in adult rats. Cellular localization of Acatn mRNA in adult rat brain was also analyzed by in situ hybridization. Acatn mRNA expression was detected in the neuronal cells of cerebellum, hippocampus, hypothalamus, cortex, olfactory bulb, and dorsal and ventral anterior olfactory nucleus in adult rat brain.  相似文献   

13.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

14.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

15.
S Beckh  M Noda  H Lübbert    S Numa 《The EMBO journal》1989,8(12):3611-3616
The levels of the mRNAs encoding sodium channels I, II and III in various regions of the developing rat central nervous system (from embryonal day 10 to postnatal day 90) have been examined by blot hybridization analysis with specific probes. The three sodium channel mRNAs exhibit different temporal and regional expression patterns. The expression of sodium channel I mRNA rises after a lag phase to adult levels during the second and third postnatal weeks with stronger increases in caudal regions of the brain and in spinal cord. Sodium channel II mRNA increases steadily until the first postnatal week, keeping high adult levels in rostral regions of the brain or reaching low adult levels after the second postnatal week in most caudal regions of the brain and in spinal cord; cerebellum shows low levels during the first two postnatal weeks but high adult levels. In all regions, sodium channel III mRNA attains maximum levels around birth and decreases during the first and second postnatal weeks to reach variable low adult levels. These results suggest that sodium channel III is expressed predominantly at fetal and early postnatal stages and sodium channel I predominantly at late postnatal stages, whereas sodium channel II is expressed throughout the developmental stages studied with greater regional variability.  相似文献   

16.
The GABAA receptor, a multisubunit ligand-gated ion channel, plays a central role in cell–cell communication in the developing and adult nervous system. Although the developmental expression of mRNAs encoding many subunit isoforms has been extensively characterized throughout the central nervous system, little is known concerning the relationship between subunit mRNA and polypeptide expression. To address this issue, we examined the developmental expression of the α1, β2/3, and γ2 subunit polypeptides, subunits that are thought to coassemble in many brain regions. Western blot analysis using subunit-specific antibodies revealed that the levels of these polypeptides in both the cerebral cortex and cerebellum increased severalfold during the second postnatal week. Whereas polypeptide expression in the cerebellum paralleled that of the corresponding subunit mRNAs, increase in β2/3 and γ2 polypeptide expression in the cerebral cortex occurred in the absence of detectable changes in the mRNA levels. To determine whether the increases in subunit polypeptide expression in the cerebellum were accompanied by changes in distribution, immunohistochemistry was performed. These studies demonstrated that the subunits exhibited different but partially overlapping distributions that remained constant throughout postnatal development. Our findings suggest that although GABAA receptor subunit polypeptide expression may be regulated primarily at the level of the mRNA, additional regulatory mechanisms may play role. Furthermore, the observation that subunit distribution remains constant in the cell bodies of cerebellar Purkinje neurons, which express the α1, β2, β3, and γ2 subunit mRNAs exclusively, suggests that GABAA receptor subunit composition in this cell population does not change during postnatal maturation. 1994 John Wiley & Sons, Inc.  相似文献   

17.
18.
19.
20.
We have previously demonstrated an increase in adult brain DNA content in rats adrenalectomized on postnatal day 11. The present studies examined cell proliferation in cerebral cortex, cerebellum, hippocampus, and midbrain-diencephalon following adrenalectomy at this age. Compared to sham-operated controls, adrenalectomized animals showed increased [3H]thymidine incorporation into DNA (measured at 1 h following a pulse injection) in all brain regions at 7 and 14 days postsurgery. In some areas, the effect was already present as early as 2 days following adrenalectomy. Chronic replacement with corticosterone prevented this increase in DNA labelling in a dose-dependent manner. When cell proliferation in the cerebral cortex and cerebellum was independently assessed by measuring changes in thymidine kinase activity, enzyme activity was significantly elevated in both areas at 7 and 14 days postsurgery. Finally, histological examination of the cerebellar cortex suggested a delayed disappearance of the external granular layer in several cerebellar lobules of adrenalectomized animals. Overall, these findings indicate that day-11 adrenalectomy leads to a prolonged stimulation of mitotic activity in areas where cell formation at this time is exclusively glial (i.e., cerebral cortex and mid-brain-diencephalon) as well as in areas where postnatal neurogenesis is also occurring (cerebellum and hippocampus). It is hypothesized that this stimulation results from the removal of a tonic inhibitory effect exerted by circulating glucocorticoids in the normal intact animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号