首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM   总被引:12,自引:8,他引:4  
Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.  相似文献   

2.
The distribution of membrane-associated calcium in dividing sea urchin eggs was examined with chlortetracycline as a fluorescent chelate probe. The fluorescence of bound chlortetracycline in fertilized eggs was initially evenly distributed, but began to gather around the nucleus in prophase, and formed a dumb-bell shaped condensation enclosing the mitotic apparatus by metaphase. During anaphase and telophase, the fluorescence was observed in kinetochore-to-pole regions of the spindle, with little fluorescence in the interkinetochore region. The astral regions showed intense fluorescence. The distribution of the chlortetracycline-fluorescence coincided with that of ER-like membranes seen in electron micrographs. The distribution of the fluorescence was obscure and the birefringence of spindles disappeared on perfusion on perfusion of the cells in metaphase with 1 mM tetracaine, which is known to displace membrane-bound calcium. These results suggest that intracellular free calcium ions are sequestered in the membrane system associated with the mitotic apparatus during mitosis.  相似文献   

3.
The members of the family of Rab11 small GTPases are critical regulators of the plasma membrane vesicle recycling system. While previous studies have determined that the Golgi apparatus disperses during mitosis and reorganizes after cytokinesis, the fate of the recycling system during the cell cycle is more obscure. We have now studied in MDCK cells the fate during mitosis of an apical recycling system cargo, the polymeric IgA receptor (pIgAR), and regulators of the recycling system, Rab11a and its interacting proteins myosin Vb, Rab11-FIP1, Rab11-FIP2 and pp75/Rip11. Rab11a, pIgAR and myosin Vb containing vesicles dispersed into diffuse puncta in the cytosol during prophase and then became clustered near the spindle poles after metaphase, increasing in intensity throughout telophase. A similar pattern was observed for Rab11-FIP1 and Rab11-FIP2. However, Rab11-FIP1 lost colocalization with other recycling system markers during late prophase, relocating to the pericentriolar material. During telophase, Rab11-FIP1 returned to recycling system vesicles. Western blot analysis indicated that both Rab11a and pIgAR remained associated with membrane vesicles throughout the cell cycle. This behavior of the Rab11a-containing apical recycling endosome system during division was distinct from that of the Golgi apparatus. These results indicate that critical components of the apical recycling system remain associated on vesicles throughout the cell cycle and may provide a means for rapid re-establishment of plasma membrane components after mitosis.  相似文献   

4.
Immunoelectron microscopy and stereology were used to identify and quantitate Golgi fragments in metaphase HeLa cells and to study Golgi reassembly during telophase. On ultrathin frozen sections of metaphase cells, labeling for the Golgi marker protein, galactosyltransferase, was found over multivesicular Golgi clusters and free vesicles that were found mainly in the mitotic spindle region. The density of Golgi cluster membrane varied from cell to cell and was inversely related to the density of free vesicles in the spindle. There were thousands of free Golgi vesicles and they comprised a significant proportion of the total Golgi membrane. During telophase, the distribution of galactosyltransferase labeling shifted from free Golgi vesicles towards Golgi clusters and the population of free vesicles was depleted. The number of clusters was no more than in metaphase cells so the observed fourfold increase in membrane surface meant that individual clusters had increased in size. More than half of these had cisterna(e) and were located next to "buds" on the endoplasmic reticulum. Early in G1 the number of clusters dropped as they congregated in the juxtanuclear region and fused. These results show that fragmentation of the Golgi apparatus yields Golgi clusters and free vesicles and reassembly from these fragments is at least a two-step process: (a) growth of a limited number of dispersed clusters by accretion and fusion of vesicles to form cisternal clusters next to membranous "buds" on the endoplasmic reticulum; (b) congregation and fusion to form the interphase Golgi stack in the juxtanuclear region.  相似文献   

5.
The proteasome is a multicatalytic proteinase complex composed of nonidentical subunits. By immunocytochemical analysis using monoclonal antibody raised against the egg proteasome, we demonstrate that the proteasome undergoes changes in its subcellular distribution, depending on the cell division cycle during embryonic development of the ascidian Halocynthia roretzi. During interphase, the proteasome is localized in the nucleus, i.e., in the nucleoplasm and along the nuclear membrane. The proteasome disappears from the nucleoplasm in prophase and from the nuclear envelope in prometaphase. During early metaphase, the proteasome is detectable in the chromosomes and, at late stages of metaphase, the immunoreactivity also occurs in the peripheral region of each spindle pole and at the mitotic spindle. In anaphase, however, the staining disappears in the mitotic apparatus. In telophase, the proteasome is again localized in the newly formed nucleus. In addition to the localization in the nucleus and around the mitotic apparatus, the proteasome shows cytoplasmic localization throughout the cell division cycle. Such a change of subcellular distribution of the proteasome is clearly demonstrated in the synchronously dividing blastomeres and also is believed to occur in the postcleavage embryos. These observations suggest that the proteasome may play a key role in the progression of cell division cycle.  相似文献   

6.
The phases of mitosis were examined in the columnar cells at the base of duodenal crypts in adult male mice given an intravenous injection of 3H-thymidine and sacrificed 20 min later. The duodenum was fixed by immersion into glutaraldehyde-formaldehyde, and the cells were examined in the electron microscope, with or without processing for radioautography. Interphase nuclei are characterized by the distribution of chromatin; aside from the cortical chromatin spread along nuclear envelope and nucleolus, there are chromatin accumulations that belong mainly in two different classes: 1) numerous chromatin "specks" ranging in size from about 5 to 70 nm and averaging 47 nm; 2) a few roughly circular or elongated chromatin "packets" measuring from 70 to 230 nm. Early prophase nuclei differ mainly by a large increase in the number of chromatin packets to 20-30 or more per nuclear profile; their average diameter is 128 nm. During mid-prophase, the chromatin packets enlarge gradually to an average 221 nm diameter. Between mid- and late prophase, there is a further increase in diameter to 679 nm. At metaphase, the packets take on the appearance of mature chromosomes, and their diameter increases to 767 nm. At anaphase, daughter chromosomes migrate to each pole, where they fuse into a compact chromatin mass. At telophase, nucleoplasmic areas progressively enlarge within the chromatin mass and separate strands of chromatin, which gradually become segmented into chromatin clumps. Counts of mitotic cells show a high proportion of prophase and telophase nuclei. Calculation from the counts yields the duration of the phases, that is, 5.6, 0.2, 0.1, and 1.6 hr, respectively, for pro-, meta-, ana-, and telophase. Finally, radioautography 20 min after 3H-thymidine injection shows labeling in 54% of the interphase nuclei, 85% of early prophase nuclei, and 73% of mid-prophase nuclei, while there is no label in late prophase, metaphase, anaphase and telophase nuclei. In confirmation of previous light microscopic work, the S stage of the cycle begins when a cell is in interphase and continues through the early prophase and part of mid-prophase. Moreover, the main sites of DNA synthesis are the chromatin specks during interphase and the cortical chromatin during early and mid-prophase. The chromosome condensation taking place in the meantime may be separated into two main steps: 1) a slow, moderate condensation of the chromatin packets during early and mid-prophase and 2) a rapid, pronounced one during late prophase and prometaphase when the packets become chromosomes.  相似文献   

7.
The formation of mitotic centrosomes is a complex process in which a number of cellular proteins translocate to mitotic poles and play a critical role in the organization of the mitotic apparatus. The 238-kDa nuclear mitotic apparatus protein NuMA is one of the important proteins that plays a significant role in this process. NuMA resides in the nucleus during interphase and becomes transiently associated with mitotic centrosomes after multiple steps of phosphorylations. The role of NuMA in the interphase nucleus is not well known but it is clear that NuMA responds to external signals (such as hormones) that induce cell division, or heat shock that induces apoptosis. In order to determine the function of NuMA it is important to study its localization. Here we report on nuclear organization of NuMA during the cell cycle in estrogen responsive MCF-7 breast cancer cells and in androgen responsive LNCaP prostate cancer cells using immunoelectron microscopy, and on correlation to MPM-2 monoclonal phosphoprotein antibody. These results show that NuMA is present in speckled and punctate form associated with distinct material corresponding to a speckled or punctate immunofluorescence appearance in the nucleus while MPM-2 is uniformly dispersed in the nucleus. At prophase NuMA disperses in the cytoplasm and associates with microtubules while MPM-2 is uniformly distributed in the cytoplasm. During metaphase or anaphase anti-NuMA labeling is associated with spindle fibers. During telophase NuMA relocates to electron-dense areas around chromatin and finally to the reconstituted nuclei. These results demonstrate NuMA organization in MCF-7 and LNCaP cells in the log phase of cell culture growth.  相似文献   

8.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

9.
Indirect immunofluorescence was used to determine the distribution of calmodulin in the mitotic apparatus of rat kangaroo PtK2 and Chinese hamster ovary (CHO) cells. The distribution of calmodulin in PtK2 cells was compared to the distribution of tubulin, also as revealed by indirect immunofluorescence. During mitosis, calmodulin was found to be a dynamic component of the mitotic apparatus. Calmodulin first appeared in association with the forming mitotic apparatus during midprophase. In metaphase and anaphase, calmodulin was found between the spindle poles and the chromosomes. While tubulin was found in the interzonal region throughout anaphase, calmodulin appeared in the interzone region only at late anaphase. The interzonal calmodulin of late anaphase condensed during telophase into two small regions, one on each side of the midbody. Calmodulin was not detected in the cleavage furrow. In view of the differences in the localization of calmodulin, tubulin, and actin in the mitotic apparatus, experiments were designed to determine the effects of various antimitotic drugs on calmodulin localization. Cytochalasin B, an inhibitor of actin microfilaments, had no apparent effect on calmodulin or tubulin localization in the mitotic apparatus of CHO cells. Microtubule inhibitors, such as colcemid and N2O, altered the appearance of tubulin- and calmodulin-specific fluorescence in mitotic CHO cells. Cold temperature (0 degrees C) altered tubulin-specific fluorescence of metaphase PtK2 cells but did not alter calmodulin-specific fluorescence. From these studies, it is concluded that calmodulin is more closely associated with the kinetichore-to-pole microtubules than other components of the mitotic apparatus.  相似文献   

10.
The evolution of nucleolar material was analyzed during spermatogenesis of two grasshopper species by using “in vivo” visualization and the silver staining method. Both nucleoli and nucleolar remnants are detectable during prophase I and absent from metaphase I until telophase I. During telophase I a great number of small silver positive masses which correspond to prenucleolar bodies (PBs) are observed covering the chromatin surface. At interkinesis these PBs coalesce to form nucleoli, which are dispersed at prophase II. Silver dots at NOR position were observed on metaphase II chromosomes. PBs reappear at telophase II and give rise to the nucleoli detected in early spermatids.This cycle is compared with those reported in plants and in some other animal species.  相似文献   

11.
O. Terasaka  T. Niitsu 《Protoplasma》1995,189(3-4):187-193
Summary The structure of the mitotic apparatus during the microspore division ofTradescantia paludosa, which has a distinctively unequal division of large vegetative and small generative cells, was studied using -tubulin immunofluorescence methods and confocal laser scanning microscopy. Mitotic apparatuses began to develop asynchronously during early prophase at the vegetative pole (VP) and during prometaphase at the generative pole (GP). Both, however, reached completion together at the same time during metaphase. At the VP from prophase to prometaphase, microtubules (MTs) did not converge on the pole, and there was a circular area containing only a few MTs. The prophase spindles on the VP side were in the form of domes or cones that lacked the top. In the metaphase, however, the MTs concentrated at the pole to form a representative cone-shaped half-spindle. At the GP from prometaphase to metaphase, the MTs did not concentrate, and a circular area existed that lacked MTs. The half-spindles formed truncated cones. When the phragmoplast developed and curved around the generative nucleus during the telophase. it first grew toward the long axis of the ellipsoidal-shaped microspore; and after it arrived at the inner membrane of the microspore, it again curved past the generative nucleus toward the short axis. In conclusion, it was found that the mitotic apparatus ofT. paludosa microspores with its asynchronous growth and asymmetrical spindle structure and with its three dimensional growth of phragmoplasts had a peculiar developmental manner related to unequal division.  相似文献   

12.
The kinetics of isthmal cells in mouse antrum were examined in three ways: the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; the duration of interphase and mitotic phases was determined from how frequently they occurred; and mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis. The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively. From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurrence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr. Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase. We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

13.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

14.
Summary The number of dictyosomes found in one central cell section in antheridial filaments ofChara vulgaris increases proportionally to the cell length during interphase. The activity of Golgi apparatus was expressed by a number of Golgi vesicles surrounding a single dictyosome. These vesicles are most numerous during mitosis and cytokinesis,i.e., prior to and during cell plate formation. In the middle and late S phase the number of Golgi vesicles decreases by about 25%; subsequently, during the early and middle G2, it increases again. At the end of the G2 phase, Golgi vesicles are the scarcest.The increase in the number of Golgi vesicles during the G2 phase coincides with the period of intense cellular elongation, and, thus, it is probably related to the enhanced synthesis of cell wall components.Coated vesicles are most numerous in prophase, metaphase, and early telophase, and during interphase in both late S and G2 phase. It was found that the number of coated vesicles is proportional to the degree of condensation of nuclear chromatin.This work was supported by the Polish Academy of Sciences within the project 09.7.3.1.4.  相似文献   

15.
The Nucleolus and Parachromatin of the Ascites Tumor Cell   总被引:1,自引:1,他引:0       下载免费PDF全文
1. A method is described for distinguishing the ribonucleoproteins of the nucleolus and parachromatin of ascitic tumor cells of the mouse. 2. In these cells the transfer of ribonucleoprotein from the nucleus to the cytoplasm can occur in two ways. (a) At the end of prophase the nucleolus separates from the chromosomes and nucleolar fragments are released into the cytoplasm. (b) During prophase the parachromatin is aggregated to form parachromatin bodies which are discharged into the cytoplasm, where they can be detected during metaphase, anaphase, and telophase. 3. A metachromatic form of RNA is demonstrable, and may be synthesized, in close relation to the chromosomes during prophase, metaphase, and anaphase. During telophase the distribution of metachromatic RNA changes, the chromatin loses its metachromasia, and intranuclear metachromatic parachromatin becomes evident.  相似文献   

16.
T. Hori  J. C. Green 《Protoplasma》1985,125(1-2):140-151
Summary Mitosis and cytokinesis have been studied in the flagellate algaIsochrysis galbana Parke (Prymnesiophyceae). Nuclear division is preceded by replication of the flagella and haptonema, the Golgi body and the chloroplast; fission in the chloroplast occurs in the region of the pyrenoid. During prophase, spindle microtubules radiating from two ill-defined poles are formed. The nuclear envelope breaks down and the chromatin condenses. At metaphase the spindle is fully developed, some pole-to-pole microtubules passing through the well-defined chromatin plate, others terminating at it. No kinetochores or individual chromosomes were observed. By late metaphase, many Golgi-derived vesicles may be seen against the two poleward faces of the metaphase plate. During anaphase, the two daughter masses of chromatin move towards the poles. In early telophase, the nuclear envelope of each daughter nucleus is complete only on the side towards the adjacent chloroplast, remaining open on the interzonal side. However, during telophase each nucleus becomes reorientated so that it lies lateral to the long axis of the spindle and with its open side towards the chloroplasts. By late telophase, each new nuclear envelope is complete and confluence with the adjacent chloroplast ER established.Cytokinesis and subsequent segregation of the daughter cells are effected by the dilation of Golgi- and ER-derived vesicles in the interzonal region. No microtubular structures are involved. Comparisons with the results from other studies of mitosis in members of thePrymnesiophyceae show that they all have a number of features in common, but that there are differences in detail between species.  相似文献   

17.
The reaction to C-banding was investigated throughout the mitotic cycle ofCrepis capillaris (2n=6): (1) 18–22 C-bodies or C-bands were found during mid telophase and interphase to prophase and metaphase, and also 12–14 at late anaphase to early telophase in the mitotic cycle. Fewer C-bands in late anaphase to early telophase were due to the absence of minute bands; (2) large and medium sized C-bands were strongly stained by Giemsa, while small and minute bands stained palely. It is suggested that inCrepis capillaris the difference of color in C-banded segments following Giemsa staining is referable to the amount of constitutive heterochromatin rather than to the difference in the condensation and decondensation; (3) the size of C-bodies changed during telophase to interphase and prophase. It is inferred that the extent of C-bodies is regulated by both the length of DNA sequences of constitutive heterochromatin and the amount of proteins combined with C-banded DNA. It was shown that the reaction to C-banding is neither due to the differential condensation of chromatin nor to a higher concentration of DNA in the C-banded regions, in the C-banding mechanism as has been suggested so far at least.  相似文献   

18.
In onion root meristems, the number of dictyosomes per cell shows a kinetics of growth strongly related to the cell cycle. During the interphase of steady-state proliferative cells, the volume density and numerical density of the Golgi apparatus decrease to reach minimum values in late-interphase cells, characterized by their greatest length. This pattern is also found in the total volume occupied by Golgi apparatus. Once in mitosis, the above-mentioned parameters begin to increase reaching maximum mean values in telophase. After the experimental uncoupling of chromosome and growth cycles by presynchronization with hydroxyurea, we found a similar behaviour pattern in the Golgi apparatus: decreasing values during interphase and a triggering of Golgi-apparatus growth in prophase independently of the bigger cell sizes reached in mitosis as an effect of pretreatment with hydroxyurea. These results indicate a cyclic kinetics of this subcellular component in higher-plant meristems, coupled with early mitotic events.  相似文献   

19.
Abstract. The kinetics of isthmal cells in mouse antrum were examined in three ways: (a) the duration of cell cycle and DNA-synthesizing (S) stage was measured by the 'fraction of labelled mitoses' method; (b) the duration of interphase and mitotic phases was determined from how frequently they occurred; and (c) mice were killed at various intervals after an intravenous injection of 3H-thymidine to time the acquisition of label by the various phases of mitosis.
The duration of the isthmal cell cycle was found to be 13.8 hr and that of the DNA-synthesizing (S) stage, 5.8 h. Estimates for the duration of the G1 and G2 stages were 6.8 and 1.0 hr, respectively.
From the frequency of mitotic phases, defined as indicated in the preceding article (El-Alfy & Leblond, 1987) and corrected for the probability of their occurence, it was estimated that prophase lasted 4.8 hr; metaphase, 0.2 hr; anaphase, 0.06 hr and telophase, 3.3 hr, while the interphase lasted 5.4 hr. In accordance with this, the duration of the whole mitotic process was 8.4 hr.
Ten minutes after an intravenous injection of 3H-thymidine, 38% of labelled isthmal cells were in interphase and 62% in early or mid prophase, while cells in late prophase and other mitotic phases were unlabelled. After 60 min, label was in late prophase, after 120 min, in mid telophase and after 180 min, in late telophase.
We conclude that there is overlap between some mitotic phases and cycle stages. Thus, while nuclei are at interphase during the early third of S, they are in prophase during the late two-thirds as well as during G2. Also, nuclei are in telophase during the early half of G1 but at interphase during the late half. Differences in nuclear diameter show that subdivision of both S and G1 into early and late periods is practical.  相似文献   

20.
Post-fertilization events leading to the cleavage of the zygote of the sea-urchin, Arbacia punctulata were examined with the light and electron microscopes. Prior to prophase of the first cleavage division, endoplasmic reticulum and annulate lamellae become organized around the zygotic nucleus to produce a crescent-shaped structure which is defined as the streak (Harvey, '56). With the advent of prophase the streak undergoes morphogenic events which lead to the formation of the mitotic asters. During this transition there is a loss of annulate lamellae and a concomitant increase in endoplasmic reticulum. Annulate lamellae are not found as a part of the mitotic apparatus and are not again observed within the embryo until the two cell stage. During telophase, karyomeres are formed which consist of chromosomes delimited by a porous bilaminar envelope. Blastomere nuclei are produced following the fusion of the outer laminae, and subsequently by the fusion of the inner laminae of the envelopes encompassing the karyomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号