首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A new method for recognizing eukaryotic gene promoters was based on their partition and on analysis of correlations of dinucleotide frequencies for each individual fragment. The method was used to recognize the TATA-containing and TATA-less promoters of Drosophila melanogaster genes. Dinucleotide context was correlated with conformational and physicochemical DNA properties in promoter fragments. Mean values of several parameters proved to dramatically change on transition from the TATA box to its GC-rich flanks. In TATA-less promoters, specific properties were revealed in the DPE region. The method was employed in a promoter recognition program, which is available through Internet.  相似文献   

3.
4.
5.
6.
7.
A 3H-labelled actin-specific probe was hybridized to Drosophila melanogaster X chromosomes heterozygous for deficiencies in the 5C region. The results suggest that the sex-linked actin gene resides in the overlap region of Df(1)C149 and Df(1)N73 at 5C3-4.  相似文献   

8.
9.
10.
11.
The major cytoskeletal actin gene of Drosophila melanogaster, the actin 5C gene, has two promoters, the proximal one of which controls constitutive synthesis of actin in all growing tissues. To locate regulatory elements required for constitutive activity of the proximal promoter, mutants of this promoter were fused to the bacterial chloramphenicol acetyltransferase gene and assayed for transient expression activity in cultured Drosophila embryonic Schneider line 2 cells. An essential regulatory element has been located 313 base pairs upstream from the cap site. Deletion of this element lowered expression to one-third of the wild-type level. The element has the sequence AAGTTGTAGTTG, as shown by protein-binding footprinting with the reagent methidiumpropyl-EDTA-Fe(II). This element is probably not a general one, since it was not detected in a search of the published 5'-flanking sequences of 27 Drosophila genes. In addition to this regulatory element, there are five GAGA elements in the actin 5C proximal promoter, some or all of which are essential for the promoter activity as shown by an in vivo competition assay. Although this promoter has no classical TATA element, there is an essential promoter region about 35 base pairs upstream from the cap site that could be a TATA surrogate. The promoter also shows sequences homologous to the alcohol dehydrogenase factor 1-binding site and to the core of the vertebrate serum response element, but mutations of these sites did not affect promoter activity in transient expression assays.  相似文献   

12.
13.
14.
15.
16.
Lee AM  Wu CT 《Genetics》2006,174(4):1867-1880
The many reports of trans interactions between homologous as well as nonhomologous loci in a wide variety of organisms argue that such interactions play an important role in gene regulation. The yellow locus of Drosophila is especially useful for investigating the mechanisms of trans interactions due to its ability to support transvection and the relative ease with which it can be altered by targeted gene replacement. In this study, we exploit these aspects of yellow to further our understanding of cis as well as trans forms of enhancer-promoter communication. Through the analysis of yellow alleles whose promoters have been replaced with wild-type or altered promoters from other genes, we show that mutation of single core promoter elements of two of the three heterologous promoters tested can influence whether yellow enhancers act in cis or in trans. This finding parallels observations of the yellow promoter, suggesting that the manner in which trans interactions are controlled by core promoter elements describes a general mechanism. We further demonstrate that heterologous promoters themselves can be activated in trans as well as participate in pairing-mediated insulator bypass. These results highlight the potential of diverse promoters to partake in many forms of trans interactions.  相似文献   

17.
The 5S genes of Drosophila melanogaster.   总被引:22,自引:0,他引:22  
We have cloned embryonic Drosophila DNA using the poly (dA-DT) connector method (Lobban and Kaiser, 1973) and the ampicillin-resistant plasmid pSF2124 (So, Gill and Falkow, 1975) as a cloning vehicle. Two clones, containing hybrid plasmids with sequences complementary to a 5S RNA probe isolated from Drosophila tissue culture cells, were identified by the Grunstein and Hogness (1975) colony hybridization procedure. One hybrid plasmid has a Drosophila insert which is comprised solely of tandem repeats of the 5S gene plus spacer sequences. The other plasmid contains an insert which has about 20 tandem 5S repeat units plus an additional 4 kilobases of adjacent sequences. The size of the 5S repeat unit was determined by gel electrophoresis and was found to be approximately 375 base pairs. We present a restriction map of both plasmids, and a detailed map of of the5S repeat unit. The 5S repat unit shows slight length and sequence heterogeneity. We present evidence suggesting that the 5S genes in Drosophila melanogaster may be arranged in a single continuous cluster.  相似文献   

18.
The 5 s RNA genes of Drosophila melanogaster   总被引:16,自引:0,他引:16  
  相似文献   

19.
20.
The sequence of the entire 5S RNA gene of Drosophila melanogaster was determined by sequencing collectively 23 copies contained in a cloned fragment of Drosophila DNA and by sequencing individually four subcloned gene copies. A repetitive heptamer (GCTG CCT) present in variable numbers immediately following the coding sequence, is responsible for the length heterogeneity in the spacer region. Some of the gene copies contain a nucleotide change in the coding region which results in a new site for the restriction enzyme Mn1 I. The variant 5S RNA produced by these gene copies has not been detected in vivo. Two other single nucleotide variations were identified in the spacer region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号