首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sporophytic self-incompatibility (SSI) was studied in 11 British Senecio squalidus populations to quantify mating system variation and determine how its recent colonization of the United Kingdom has influenced its mating behavior. S allele number, frequency, and dominance interactions in populations were assessed using full diallels of controlled pollinations. A mean of 5.1 S alleles per population was observed, and no population contained more than six S alleles. Numbers of S alleles within populations of S. squalidus declined with increasing distance from the center of its introduction (Oxford). Cross-classification of S alleles allowed an estimate of approximately seven and no more than 11 S alleles for the entire British S. squalidus population. The low number of S alleles observed in British S. squalidus compared to other SI species is consistent with the population bottleneck associated with S. squalidus' introduction to the Oxford Botanic Garden and subsequent colonization of Britain. Extensive S allele dominance interactions were observed to be a feature of the S. squalidus SSI system and may represent an adaptive response to improve limited mate availability imposed by the presence of so few S alleles. Multilocus allozyme genotypes were also identified for individuals in all populations and geographic patterns of S locus and allozyme loci variation investigated. Less interpopulation structure was observed for the S locus than for allozyme diversity--a finding indicative of the effects of negative frequency-dependent selection at the S locus maintaining equal S phenotypes within populations and enhancing effective migration between populations.  相似文献   

2.
We examined the effect of inbreeding on fitness (through both male and female functions) and changes in self-fertility in the partially self-incompatible species Campanula rapunculoides. Individuals in natural populations of C. rapunculoides varied extensively in their strength of self-incompatibility (SI). We crossed 11 individuals that differed in their strength of SI to generate families with four levels of inbreeding (f = 0.0, 0.25, 0.5, and 0.75). Progeny were scored for three traits related to male fitness and for outcrossed and selfed seed production. Analyses of variance revealed significant inbreeding depression for the three male traits and seed set. Families with strong or weak SI differed in their response to inbreeding. Families with weak SI had lower levels of inbreeding depression for most traits than families with strong SI, but strong SI families had a greater increase in selfed seed set, but not self-fertility, with inbreeding. Finally, we found evidence of a significant linear response to inbreeding for all three male reproductive traits and outcrossed seed, indicating that inbreeding depression was primarily caused by partially or fully recessive deleterious alleles. Variation in genetic load was associated with variation in self-fertility, a finding that suggests an evolutionary role for partial self-fertility in natural populations of C. rapunculoides.  相似文献   

3.
Twenty-six individuals of the sporophytic self-incompatible (SSI) weed, Senecio squalidus were crossed in a full diallel to determine the number and frequency of S alleles in an Oxford population. Incompatibility phenotypes were determined by fruit-set results and the mating patterns observed fitted a SSI model that allowed us to identify six S alleles. Standard population S allele number estimators were modified to deal with S allele data from a species with SSI. These modified estimators predicted a total number of approximately six S alleles for the entire Oxford population of S. squalidus. This estimate of S allele number is low compared to other estimates of S allele diversity in species with SSI. Low S allele diversity in S. squalidus is expected to have arisen as a consequence of a disturbed population history since its introduction and subsequent colonisation of the British Isles. Other features of the SSI system in S. squalidus were also investigated: (a) the strength of self-incompatibility response; (b) the nature of S allele dominance interactions; and (c) the relative frequencies of S phenotypes. These are discussed in view of the low S allele diversity estimates and the known population history of S. squalidus.  相似文献   

4.
Brennan AC  Harris SA  Hiscock SJ 《Heredity》2003,91(5):502-509
We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.  相似文献   

5.
Self-incompatibility (SI) is a widespread mechanism that prevents inbreeding in flowering plants. In many species, SI is controlled by a single locus (the S locus) where numerous alleles are maintained by negative frequency-dependent selection. Inbreeding depression, the decline in fitness of selfed individuals compared to outcrossed ones, is an essential factor in the evolution of SI systems. Conversely, breeding systems influence levels of inbreeding depression. Little is known about the joint effect of SI and drift on inbreeding depression. Here we studied, using a two-locus model, the effect of SI (frequency-dependent selection) on a locus subject to recurrent deleterious mutations causing inbreeding depression. Simulations were performed to assess the effect of population size and linkage between the two loci on the level of inbreeding depression and genetic load. We show that the sheltering of deleterious alleles linked to the S locus strengthens inbreeding depression in small populations. We discuss the implications of our results for the evolution of SI systems.  相似文献   

6.
? Premise of the study: Embryonic inbreeding depression is a key influence on mating system evolution and can be difficult to estimate in self-incompatible species. A pollen chase experiment was used to estimate the magnitude of embryonic inbreeding depression in Costa Rican Witheringia solanacea, a species polymorphic for self-incompatibility (SI). In a pollen chase experiment, bud self-pollinations are followed after anthesis by outcross pollinations, with a comparable pair of outcross pollinations used as a control. Lowered seed set for the self-precedence treatment indicates embryonic inbreeding depression. ? Methods: Embryonic inbreeding depression was assayed for self-compatible (SC) individuals and for SI plants from two populations that differ quantitatively in the onset and enzymatic activity of their SI response. Microsatellite markers were used to assay the selfing rate of a sample of surviving progeny from the prior self-pollination treatment. ? Key results: SC individuals showed no evidence of embryonic inbreeding depression. In SI plants, prior self-pollination reduced seed number by 28-70%, depending on population. Microsatellite genotyping revealed that embryonic inbreeding depression was even more severe than estimated by the phenotypic data: for mature fruits resulting from self-pollination precedence, the majority of the progeny were the result of outcross fertilization. ? Conclusions: Lineage-specific purging of recessive lethals has accompanied the evolution of SC in this species. SI populations show contrasting levels of embryonic inbreeding depression, with nearly complete embryonic lethality upon selfing in the Monteverde population. In the face of high embryonic inbreeding depression, an increase in selfing rate can evidently occur only under severe pollen limitation.  相似文献   

7.
It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self‐incompatible species, for self‐compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual‐based simulations of a range expansion, in which inbreeding depression, variation in self‐incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range‐marginal populations. Under conditions of high recombination between the self‐incompatibility locus (S‐locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self‐incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination.?  相似文献   

8.
Senecio squalidus (Oxford Ragwort) is being used as a model species to study the genetics and molecular genetics of self-incompatibility (SI) in the Asteraceae. S. squalidus has a strong system of sporophytic SI (SSI) and populations within the UK contain very few S alleles probably due to a population bottleneck experienced on its introduction to the UK. The genetic control of SSI in S. squalidus is complex and may involve a second locus epistatic to S. Progress towards identifying the female determinant of SSI in S. squalidus is reviewed here. Research is focused on plants carrying two defined S alleles, S(1) and S(2). S(2) is dominant to S(1) in pollen and stigma. RT-PCR was used to amplify three SRK-like cDNAs from stigmas of S(1)S(2) heterozygotes, but the expression patterns of these cDNAs suggest that they are unlikely to be directly involved in SI or pollen-stigma interactions in contrast to SSI in the Brassicaceae. Stigma-specific proteins associated with the S(1) allele and the S(2) allele have been identified using isoelectric focusing and these proteins have been designated SSP1 (Stigma S-associated Protein 1) and SSP2. SSP1 and SSP2 cDNAs have been cloned by 3' and 5' RACE and shown to be allelic forms of the same gene, SSP. The expression of SSP and its linkage to the S locus are currently being investigated. Initial results show SSP to be expressed exclusively in stigmas and developmentally regulated, with maximal expression occurring at and just before anthesis when SI is fully functional, SSP expression being undetectable in immature buds. Together these data suggest that SSP is a strong candidate for a Senecio S-gene.  相似文献   

9.
Homoploid hybrid speciation occurs through stabilization of a hybrid segregate (or segregates) isolated by premating and/or postmating barriers from parent taxa. Theory predicts that ecological and spatial isolation are of critical importance during homoploid hybrid speciation, and all confirmed homoploid hybrid species are ecologically isolated from their parents. Until recently, such species have been identified long after they originated, and consequently it has not been possible to determine the relative importance of spatial and ecological isolation during their origin. Here we present evidence for the recent origin (within the past 300 years) of a new homoploid hybrid species, Senecio squalidus (Asteraceae), in the British Isles, following long-distance dispersal of hybrid material from a hybrid zone between S. aethnensis and S. chrysanthemifolius on Mount Etna, Sicily, Italy. Historical records show that such hybrid material from Sicily was introduced to the Oxford Botanic Garden in Britain in the early part of the 18th century and that S. squalidus began to spread from there after approximately 90 years. A survey of randomly amplified polymorphic DNA/intersimple sequence repeats (RAPD/ISSR) marker variation demonstrated that S. squalidus is a diploid hybrid derivative of S. aethnensis and S. chrysanthemifolius that grow at high and low altitudes, respectively, on Mount Etna and that form a hybrid zone at intermediate altitudes. Senecio squalidus contained 11 of 13 RAPD/ISSR markers that were recorded at high frequency in S. chrysanthemifolius but were absent or occurred at low frequency in S. aethnensis, and 10 of 13 markers for which the reverse was true. Bayesian admixture analysis showed that all individuals of S. squalidus surveyed were of mixed ancestry with relatively high mean proportions of ancestry derived from both S. chrysanthemifolius and S. aethnensis (0.644 and 0.356, respectively). We argue that long-distance isolation of hybrid material from its parents on Mount Etna would have helped favor the origin and establishment of S. squalidus in the British Isles, regardless of whether the initial hybrid material introduced to Britain was preadapted to local conditions.  相似文献   

10.

Background  

Solanum carolinense (horsenettle) is a highly successful weed with a gametophytic self-incompatibility (SI) system. Previous studies reveal that the strength of SI in S. carolinense is a plastic trait, associated with particular S -alleles. The importance of this variation in self-fertility on the ability of horsenettle to found and establish new populations will depend, to a large extent, on the magnitude of inbreeding depression. We performed a series of greenhouse and field experiments to determine the magnitude of inbreeding depression in S. carolinense, whether inbreeding depression varies by family, and whether the estimates of inbreeding depression vary under field and greenhouse conditions. We performed a series of controlled self- and cross-pollinations on 16 genets collected from a large population in Pennsylvania to obtain progeny with different levels of inbreeding. We grew the selfed and outcrossed progeny in the greenhouse and under field conditions and recorded various measures of growth and reproductive output.  相似文献   

11.
Senecio squalidus L. (Asteraceae) has been the subject of several ecological and population genetic studies due to its well-documented history of introduction, establishment and spread throughout Britain in the past 300 years. Our recent studies have focused on identifying and quantifying factors associated with the sporophytic self-incompatibility (SSI) system of S. squalidus that may have contributed to its success as a colonist. These findings are of general biological interest because they provide important insights into the short-term evolutionary dynamics of a plant mating system. The number of S-alleles in populations and their dominance interactions were investigated in eight wild British populations using cross-diallel studies. The numbers of S-alleles in British S. squalidus populations are typically low (average of 5.3 S-alleles) and the entire British population is estimated to possess no more than 7-11 S-alleles. Such low numbers of S-alleles are most probably a consequence of population bottlenecks associated with introduction and colonization. Potential evolutionary impacts on SSI caused by a paucity of S-alleles, such as restricted mate availability, are discussed, and we suggest that increased dominance interactions between S-alleles may be an important short-term means of increasing mate availability when S-allele numbers are low.  相似文献   

12.
Konior M  Keller L  Radwan J 《Heredity》2005,94(6):577-581
Sperm competition is a potent evolutionary force shaping the reproductive biology of most animal species. Here, we estimated the heritability of sperm competition success in the promiscuous bulb mite Rhizoglyphus robini. Sperm competition success was measured with the sterile male technique as the proportion of eggs fertilised by the second of three males mated with a single female. Sperm competition success responded significantly to selection. The heritability estimated from the response to five generations of selection was 0.13. We also estimated the effect of inbreeding on sperm competition success. Males produced by sib-mating (F=0.25) had a significantly lower sperm competition success than outbred males. The estimated coefficient of inbreeding depression was 0.53. Such high inbreeding depression together with moderately low heritability is consistent with the view that sperm competitive ability is under strong directional selection and strongly influences the reproductive success of males.  相似文献   

13.
The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low levels of inbreeding depression (δ) in the greenhouse. We planted one inbred and one outbred plant from each of eight maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per ramet δ was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both fields, suggesting that inbreeding compromises herbivore resistance. Total per genet δ was 0.85 over the two years, indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.  相似文献   

14.
Fecundity is usually considered as a trait closely connected to fitness and is expected to exhibit substantial nonadditive genetic variation and inbreeding depression. However, two independent experiments, using populations of different geographical origin, indicate that early fecundity in Drosophila melanogaster behaves as a typical additive trait of low heritability. The first experiment involved artificial selection in inbred and non-inbred lines, all of them started from a common base population previously maintained in the laboratory for about 35 generations. The realized heritability estimate was 0.151 +/- 0.075 and the inbreeding depression was very small and nonsignificant (0.09 +/- 0.09% of the non-inbred mean per 1% increase in inbreeding coefficient). With inbreeding, the observed decrease in the within-line additive genetic variance and the corresponding increase of the between-line variance were very close to their expected values for pure additive gene action. This result is at odds with previous studies showing inbreeding depression and, therefore, directional dominance for the same trait and species. All experiments, however, used laboratory populations, and it is possible that the original genetic architecture of the trait in nature was subsequently altered by the joint action of random drift and adaptation to captivity. Thus, we carried out a second experiment, involving inbreeding without artificial selection in a population recently collected from the wild. In this case we obtained, again, a maximum-likelihood heritability estimate of 0.210 +/- 0.027 and very little nonsignificant inbreeding depression (0.06 +/- 0.12%). The results suggest that, for fitness-component traits, low levels of additive genetic variance are not necessarily associated with large inbreeding depression or high levels of nonadditive genetic variance.  相似文献   

15.
Mating system and inbreeding depression in quantitative traits of whitebark pine (Pinus albicaulis Engelm.) was determined using isozymes and a seedling common garden experiment. Simultaneous isozyme analysis of embryo and haploid megagametophyes from progeny arrays of families in three distinct geographic regions (Oregon, Montana, and southern British Columbia) was used to estimate parental and progeny inbreeding coefficients, as well as regional and family mean multilocus outcrossing rates (t m). Quantitative trait family means of seedlings from the same families growing in two temperature treatments in a common garden experiment were regressed on the estimated inbreeding coefficient to determine the presence and magnitude of inbreeding depression. Regional estimates of t m ranged from 0.73 to 0.93, with a mean over all regions of 0.86. Family mean t m values indicated predominant outcrossing; however, some individuals experienced substantial inbreeding. The Oregon region had a significant excess of heterozygotes in the parental generation relative to Hardy–Weinberg equilibrium, while both the Oregon and southern BC regions had a heterozygote deficiency in progeny, suggesting selection against inbred individuals. Biomass in the ambient temperature treatment for the southern BC region was the only trait significantly related to inbreeding coefficient. The mean inbreeding coefficient for this region was 0.25, and based on this relationship, mean predicted biomass would be reduced by 19.6% in this region if inbred individuals are not removed by selection. The estimated outcrossing rate of whitebark pine is slightly lower than most wind-pollinated conifers, and while most individuals are highly outcrossing, some experience substantial inbreeding.  相似文献   

16.
The possible pathways of origin of two recently arisen introgressant forms of Senecio vulgaris (i.e., var. hibernicus and York radiate groundsel) were investigated in experimental crosses between tetraploid S. vulgaris var. vulgaris and the normally diploid S. squalidus. Comparison of the morphology of synthesized hybrid progeny with established taxa, by discriminant function analysis, revealed that fertile hybrid offspring similar in morphology to S. vulgaris var. hibernicus and York radiate groundsel could be synthesized: (1) following formation of genomically stable diploid gametes by the triploid hybrid; (2) through the production of unreduced gametes by diploid S. squalidus; and (3) when a tetraploid form of S. squalidus acted as one of the parents. It was evident that hybrid offspring similar in morphology to the two introgressant taxa were more often produced in backcrosses to S. vulgaris than in segregating F2 or F3 generations (53% as opposed to 36%), and that fertile hybrid progeny were formed within two generations. Because hybridization between S. vulgaris and S. squalidus occurs regularly, although at very low frequency, in natural mixed populations in the British Isles, there is the potential for multiple origins to occur in the wild of both S. vulgaris var. hibernicus and York radiate groundsel.  相似文献   

17.
性状遗传力与QTL方差对标记辅助选择效果的影响   总被引:3,自引:0,他引:3  
鲁绍雄  吴常信  连林生 《遗传学报》2003,30(11):989-995
在采用动物模型标记辅助最佳线性无偏预测方法对个体育种值进行估计的基础上,模拟了在一个闭锁群体内连续对单个性状选择10个世代的情形,并系统地比较了性状遗传力和QTL方差对标记辅助选择所获得的遗传进展、QTL增效基因频率和群体近交系数变化的影响。结果表明:在对高遗传力和QTL方差较小的性状实施标记辅助选择时,可望获得更大的遗传进展;遗传力越高,QTL方差越大,则QTL增效基因频率的上升速度越快;遗传力较高时,群体近交系数上升的速度较为缓慢,而QTL方差对群体近交系数上升速度的影响则不甚明显。结合前人关于标记辅助选择相对效率的研究结果,可以认为:当选择性状的遗传力和QTL方差为中等水平时,标记辅助选择可望获得理想的效果。  相似文献   

18.
Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus . Comparisons of gene expression between S. aethnensis , S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus , suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus . We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants.  相似文献   

19.
Reintroductions of threatened species are increasingly common in conservation. The translocation of a small subset of individuals from a genetically diverse source population could potentially lead to substantial inbreeding depression due to the high genetic load of the parent population. We analysed 12 years of data from the reintroduced population of North Island robins Petroica longipes on Tiritiri Matangi Island, New Zealand, to determine the frequency of inbreeding and magnitude of inbreeding depression. The initial breeding population consisted of 12 females and 21 males, which came from a large mainland population of robins. The frequency of mating between relatives ( f >0; 39%, n =82 pairs) and close relatives ( f =0.25; 6.1%) and the average level of inbreeding ( f =0.027) were within the range reported for other small island populations of birds. The average level of inbreeding fluctuated from year to year depending on the frequency of close inbreeding (e.g. sib–sib pairs). We found evidence for inbreeding depression in juvenile survival, with survival probability estimated to decline from 31% among non-inbred birds ( f =0) to 11% in highly inbred juveniles ( f =0.25). The estimated number of lethal equivalents based on this relationship (4.14) was moderate compared with values reported for other island populations of passerines. Given that significant loss of fitness was only evident in highly inbred individuals, and such individuals were relatively rare once the population expanded above 30 pairs, we conclude that inbreeding depression should have little influence on this robin population. Although the future fitness consequences of any loss of genetic variation due to inbreeding are uncertain, the immediate impact of inbreeding depression is likely to be low in any reintroduced population that expands relatively quickly after establishment.  相似文献   

20.
Discriminating styles (DS), pollen-mediated pseudo-self compatibility (PMPSC), and general pseudo-self compatibility (PSC) phenomena were investigated by re-analyzing data from Petunia hybrida where known S genotypes were used. This demonstrated how female coefficient of crossability (FCC)/male coefficient of crossability (MCC) scatter diagrams and regression analyses aid in identifying and quantifying PSC within an self incompatible (SI) population. One of the female testers was identified by statistics to be SI, not DS, in contrast to what was reported in the original report, where all the plants were assumed to have operating DS. In addition, none of the females expressed PMPSC. Based on regression analysis and chi-square tests, a threshold between 27% and 31% PSC was estimated to be necessary for expression of DS. The presence of DS was also required to test for the existence of PMPSC as reported previously. The upper left-hand quadrant of the FCC/MCC scatter diagram which contains all the deviants from the theoretical SI model, is the location expression of DS has been identified. Placement for PMPSC deviants is not possible, due to the interrelationship with DS. Percent PSC did not directly equate with the different types of PSC phenomena but was useful for identifying and ranking DS in female parents. The compatible tester used in this experiment did not always produce the highest outcross seed set with the females as expected. Therefore, due to the confounding effects of the different types of PSC, it is important to choose the compatible testers with care. Regression analyses of FCC/MCC values indicated that S2.2 and S1.2 male testers did not behave in a similar fashion to S1.1 testers. It is hypothesized that this disparity could be the result of the expression of a general PSC gene, different from the DS or PMPSC genes, which is linked to the S2 allele. Since these general PSC effects associated with the S2 allele are minor in comparison to DS and PMPSC, it was necessary to distinguish the difference using statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号