首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mutation research》1987,179(2):183-195
The combined effect of transposon mobility and X-rays on X-linked recessive lethals and dominant lethals was measured in the germ line of F1 male hybrids in the P-M system of hybrid dysgenesis. X-linked lethal mutation rate was measured in the chromosome derived from the P-strain father of the M × P cross. Mutations induced in irradiated dysgenic males were compared to those of unirradiated males, as well as to irradiated nondysgenic males derived from M × M crosses. Three four-day broods of sperm were tested for both X-linked lethals and dominant lethals. X-linked lethal mutation rate in dysgenic control males was 6.38%, 6.36% and 4.55% in broods 1, 2 and 3 respectively, thus showing a decrease in older males. The mutation rate in the same broods of irradiated, nondysgenic control males was 3.66%, 4.46% and 6.38%, respectively. The rate obtained in dysgenic irradiated males was 10.33, 11.16 and 7.97 in the same 3 broods. These results demonstrate that when X-rays and P element mobility were and 7.97 in the same 3 broods. These results demonstrate that when X-rays and P element mobility were combined as a source of mutagenesis, a strickly additive effect on genetic damage was observed in the first two broods of sperm which represent primarily mature sperm and spermatids respectively. The third brood, representing mostly spermatocytes showed a less than additive effect, probably due to germinal selection. In contrast, the induction of dominant lethals showed a clearly synergistic effect in the last two Broods of sperm tested, when X-rays and transposon mobility were combined. The X-ray component of dominant lethlity in brood 1, representing mostly mature spermatozoa, was negative, indicating a lower than expected lethality induced by X-irradiation in the presence of P element mobility. The X-ray-induced component of dominant lethality, was expressed as the per cent of embryo lethality after adjusting the results obtained with each brood of sperm from nondysgenic and dysgenic males to their respective unirradiated controls. These values were 32.3%, 30.5% and 64.7% for brood 1, 2 and 3 respectively from nondysgenic males, and 14.1%, 56.1% and 71.4% for the same broods from dysgenic males. Thus the differential effect of X-rays in sperm broods 1, 2 and 3 was −18.2, +25.6 and +6.7% respectively. These results suggest that the synergistic effect may be due to the common component of X-ray and P element-induced genetic damage, namely chromosome breaks, and that the interaction of these lesions resulted in a greater than additive number of of unrestitude chromosome breaks and nonviable chromosomal rearrangements.  相似文献   

2.
The effects of glyoxal and of glyoxal pretreatments on radiation-induced genetic damage were investigated in Drosophila melanogaster mature sperm, by means of sex-linked recessive and dominant lethality, reciprocal translocation and chromosome loss tests. In addition, the possible mutagenic effect of glyoxal was assessed in postmeiotic cells up to 7 days after treatment. The results obtained show: (1) the frequencies of recessive lethals after glyoxal treatment were within control values, (2) no clastogenic effect of glyoxal was observed, (3) glyoxal pretreatment did not modify the frequency of recessive lethals induced by X-rays, (4) after pretreatment with glyoxal a consistent, though not significant, increase was seen in the frequency of reciprocal translocations in 3 replicate experiments, (5) the yield of dominant lethals and of complete and partial chromosome loss induced by radiation was significantly increased by pretreatments with glyoxal. It is suggested that the increase of the frequency of genetic endpoints resulting from chromosome breakage, when glyoxal was administered prior to irradiation, could be ascribed to: (a) a sensitizing action of glyoxal to the clastogenic effect of ionizing radiation; (b) the formation of reactive species by the interaction of glyoxal with radiation; and/or (c) interference of glyoxal with the normal handling of radiation-induced lesions in mature postmeiotic male cells.  相似文献   

3.
Studies on the genetic effects of neutrons and X-rays have produced evidence that may be interpreted as indicating that neutrons induce clusters of closely linked genetic changes. According to this interpretation, it is to be expected that neutron-induced translocations will have a higher rate of associated recessive lethality, compared with translocations induced by low-LET radiation such as X-rays. The experiment reported here was designed to test whether this expectation is fulfilled. The dose-frequency response with neutrons for the induction of autosomal translocation was established by exposing males from the Oregon-K stock and then sampling treated mature sperm. From the data obtained, it was estimated that 10 Gy neutrons should induce about the same frequency of autosomal translocations as 27 Gy X-rays. These 2 doses were used to induce translocations in the spermatozoa of males carrying lethal-free autosomes, derived from the Oregon-K stock. Induced translocations were tested for homozygous viability and fertility. When these criteria were used, no qualitative difference was detected between the translocations induced by neutrons and X-rays.  相似文献   

4.
H Ryo  K Ito  S Kondo 《Mutation research》1981,83(2):179-190
The frequencies of sex-linked recessive lethal mutations in F1 males after feeding adult male Drosophila melanogaster with 0.25 and 0.5 mM methyl methanesulfonate (MMS) orally for 24 h increased approximately linearly with storage of the treated spermatozoa in females, whereas the number of hits of dominant lethals in the sperm after feeding 0.3 and 0.5 mM MMS increased approximately with the square of the storage time. Chromosome losses and mosaics in F1 males also increased with the dose of MMS to males, but their yields were too low to be analyzed quantitatively, only indicating a slight increase of chromosome loses and a slight decrease of mosaics with the time of storage of sperm. Maternal non-disjunctions (or chromosome losses), detected in F1 males, decreased with the dose of MMS to spermatozoa and their yield decreased with the time of storage of sperm of both MMS-treated and the control groups. A unitary model is proposed to explain the effect of storage on the dominant lethals and recessive lethal mutations.  相似文献   

5.
Mary L. Alexander 《Genetics》1975,81(3):493-500
The mutation rate was determined for mature sperm at eight specific gene loci on the third chromosome of Drosophila melanogaster using the low ion density radiations of 22 Mev betatron X-rays. A dose of 3000 rads of betatron X-rays produced a mutation rate of 4.36 x 10-8 per rad/locus. Among the mutations observed, 66% were recessive lethals and 34% viable when homozygous. Only one of the 24 viable mutations was associated with a chromosome aberration. Among the 47 recessive lethals, no two-break aberrations were detected in 48.9% of the lethals, deletions were associated with 42.2%, inversions with 6.7% and translocations with 2.2%.—When these genetic results are compared to those for 250 KV X-rays, the mutation rate for betatron treatments was slightly lower (.76), the recessive lethal rate among induced mutations was higher, and the chromosome aberrations among lethal mutations were slightly lower than with 250 KV X-rays. Although the two types of irradiations differ by an ion density of approximately ten, the amount and types of inheritable genetic damage induced by the two radiations in mature sperm were not significantly different.  相似文献   

6.
The induction of dominant lethal mutations by doses of 100-400 rad X-rays in oocytes of the guinea-pig and golden hamster was studied using criteria of embryonic mortality. For both species higher yields were obtained from mature than from immature oocytes, in contrast to results for the mouse. Data on fertility indicated that in the golden hamster, as in the mouse, immature oocytes were more sensitive to killing by X-rays than mature oocytes but that the converse was true in the guinea-pig. The dose-response relationship for mutation to dominant lethals in pre-ovulatory oocytes of guinea-pig and golden hamsters was linear, both when based on pre- and post-implantation loss and when on post-implantation loss only. The rate per unit dose was higher for the golden hamster, and the old golden hamsters were possibly slightly more sensitive than young ones. The mutation rate data for mature oocytes of the mouse, using post-implantation loss alone, also fitted a linear dose-response relationship, except that the rate per unit dose was lower than for the other two species.  相似文献   

7.
Drosophila melanogaster males from a Basc stock were mutagenized with either X-rays, ethyl methanesulfonate (EMS), or nitrogen mustard (HN2). Groups of identically treated males were crossed to different types of female. Sex-linked recessive lethals were scored as a genetic end point. The females used were homozygous for X-chromosomal mutations (mus(1)101D1, mus(1)104D1, mei-9 or mei-41D5) which lead to defective DNA repair and which increase the mutagen sensitivity of larvae. Females from a white stock with normal DNA repair capacities served as controls. The premutational lesions induced in mature sperm are only processed after insemination by the maternal enzyme systems present in the oocytes. Differences in the efficiency of the processing of lesions can lead to maternal effects on the frequency of mutations recovered from mutagenized sperm. It was found that, with the exception of mus(1)104D1, all mutants analysed significantly modify the mutation fixation of one or more types of premutational lesions. The most drastic effect is found with the mus(1)101D1 stock in which HN2-induced DNA cross-links do not lead to sex-linked recessive lethals. It is assumed that mus(1)101D1 is defective in an early step of DNA cross-link repair. Our first set of data clearly demonstrates that the study of maternal effects in Drosophila is an efficient tool to analyse the in vivo function of repair mutations on chemically induced mutagenesis.  相似文献   

8.
The response of fully mature motile sperm and late spermatids when challenged with X-radiation at 0 degrees C has been studied in sex-linked recessive lethals, II-III translocations and dominant lethality experiments. At 0 degrees C a significant increase in both mutagenic and clastogenic damage was detected compared to that obtained at 24 degrees C. Furthermore, the results of experiments performed with different postirradiation temperatures demonstrate that the low temperature during irradiation was the sole factor responsible for the observed increase. In the recessive lethal and translocation tests the response of late spermatids was higher than that shown by motile spermatozoa. As a whole, the results, which are rather similar to data reported on the effect of irradiation in oxygen of the same cell stages, suggest that the low temperature acted as a dose-modifying factor.  相似文献   

9.
The rate of recessive sex-linked lethal mutations (RLM) was estimated by brood pattern method at different stages of oogenesis, initially, in the wild-type R-86 strain of Drosophila melanogaster after treatment with EI and EMS. The former which is known to induce dominant lethals in mature oocytes of the 14th stage with a high frequency was equally effective in inducing RLM in oocytes of different age and in oogonia. EMS which does not induce dominant lethals when used as vapour was shown to increase RLM frequency in mature fraction of oocytes (the 14A stage only). Similar type of different mutability was found in mutagen-sensitive strain mus-201G1 and in the control 3-4 strain having the same genetical background as mus mutation. Female germ cells of mus-201G1 strain appeared to have a higher mutability in the case of EI, though no differences in mutability between these strains after EMS treatment were registered. The data are discussed in view of the specificity of primer damages occurring as a result of comparable mutagens action and participation of different repair systems in elimination of these damages.  相似文献   

10.
Yegorova and colleagues (1978) showed that a mutant strain of Drosophila melanogaster (ebony) was more sensitive to UV-induced killing of embryos and also less proficient in photoreactivating (PR) ability than a wild-type (Canton-S) strain and that the genes governing UV sensitivity and PR ability were different and presumably located on the autosomes. The experiments reported in the present paper were designed to compare the patterns of sensitivity of these 2 strains and their hybrids to X-irradiation. The sensitivity of the larvae to the killing effects of X-irradiation, and of male and female germ-cell stages to the X-ray induction of genetic damage was studied.It was found that the larvae of the ebony strain are more sensitive to X-ray-induced killing than those of the Canton-S strain. The frequencies of radiation-induced dominant lethals and sex-linked recessive lethals are higher in spermatozoa sampled from ebony males than in those of Canton-S males. In spermatozoa sampled from hybrid males, the yields of dominant lethals are no higher than in those sampled from Canton-S males and do not seem to depend on the origin of the X-chromosome. There are no statistically significant differences between the ebony and Canton-S strains in the sensitivity of their spermatozoa to the induction of autosomal translocations.Stage-7 oocytes sampled from ebony females are more sensitive to the X-ray induction of dominant lethality than are those from Canton-S females; oocytes sampled from hybrid females manifest a level of sensitivity that is significantly lower than that in either parental strain. The frequencies of X-chromosome losses induced in in this germ-cell stage are significantly lower in ebony than in Canton-S females at least at the exposure level of 3000 R at which 3 experiments were carried out. There are no measurable differences in the amount of dominant lethality induced in stage-14 oocytes of ebony, Canton-S and hybrid females.When X-irradiated Berlin-K males are mated to ebony or Canton-S females, the yields of dominant lethals are higher when ebony females are used, showing that there is a “maternal effect” for this kind of damage. Such a maternal effect is also found for sex-linked recessive lethals (irradiated Muller-5 males mated to ebony or Canton-S females). However, when irradiated ring-X-chromosome-carrying males are mated to ebony or Canton-S females, the frequencies of paternal sex-chromosome losses (scored as XO males) are lower when ebony females are used.These results have been interpreted on the assumption that the ebony strain is homozygous for recessive, autosomal genes that confer increased radiosensitivity and that the Canton-S strain carries the normal, wild-type alleles for these genes. The higher yields of dominant and recessive lethals in mature spermatozoa and of dominant lethals in stage-7 oocytes are a consequence of an enhanced sensitivity to the mutagenic (in particular, to the chromosome-breaking) effects of X-irradiation and/or of defective repair of radiation-induced genetic damage. The lower yield of XO males from irradiated stage-7 oocytes of ebony females is probably a consequence of a defect in the repair of chromosome-breakage effects, resulting in the conversion of potential X losses in females into dominant lethals. The “maternal effects” for dominant lethals, sex-linked recessive lethals and for the loss of ring-X chromosomes are assumed to have a common causal basis, namely, a defective repair of chromosome-breakage events in the females of the ebony strain.  相似文献   

11.
Young (0—4-h-old) Drosophila melanogaster females were X-irradiated with single or fractioned exposured over a range up to 6000 R and the induction of dominant lethals in immatuer (stage-7) oocytes was studied. The results show that (i) the frequencies of dominant lethals are higher after single than after fractionated exposures; (ii) at any given exposure level, the higher the number of fractions, the lower is the frequency of dominant lethals; (iii) conserquently, the reduction in dominant lethality relative to single exposures increases with increasing number of fractions; and (iv) this relative reduction in dominant lethality approaches a maximum value when the magnitude of the single X-ray exposure approaches zero (i.e., when tha egg survival after single X-ray exposure approaches 100%); the maximum, however, are different for the different fractionation regimes, being higher with increasing number of fractions.These findings are consistent with the assumed kinetics of X-ray induction of dominant lethality in stage-7 oocytes. It is shown that it is possible to predict the expected relative reduction in dominant lethality after fractionation, from appropriate dominant lethal data from single unfractioned exposures.  相似文献   

12.
Cytogenetic effects of X-rays and fission neutrons in female mice   总被引:6,自引:0,他引:6  
The induction by X-rays of chromosomal damage in oocytes was studied, while the genetic consequences of X- and neutron-induced damage in female mice were looked for by testing offspring for dominant lethality and semi-sterility. None out of 386 sons of hybrid females given 300 rad X-rays showed evidence of semi-sterility or translocation heterozygosity, but 9 out of 294 daughters were diagnosed as semi-sterile. At least 3 and probably 4 of these (1.4%) carried reciprocal translocations, 2 of which caused male sterility. Complete or partial loss of the X-chromosome may have been responsible for some of the other sermi-steriles. Examination of oocytes at metaphase-I during the first and third weeks after X-irradiation with 100 or 400 rad revealed both multivalents (some of the ring quadrivalent type) and fragments (mainly double). These were thought to arise mainly from chromatid intercchanges (both symmetrical and asymmetrical) and isochromatid intrachanges respectively. Since neither the proportion of asymmetrical interchanges nor the amount of hidden damage was known it was not thought possible to predict the magnitude of F1 effects from metaphase-I findings. The aberration frequency in oocytes rose with dose and (at the 400 rad level only) with time after irradiation, reaching a maximum of 10% multivalents and 22% fragments in the third week after 400 rad. The frequency of univalents showed no consistent trend, but chiasma counts decreased in the first week after 400 rad. The increase in levels of chromosomal damage with dose and time after irradiation was reflected in dominant lethal frequencies after the same radiation-conception intervals and doses of 0–400 rad. Induced post-implantation lethality was over twice as high in the third week after 200–400 rad than in the first. Pre-implantation loss also greatly increased in the third week after 300 or 400 rad; this was associated with increased non-fertilization of ova. No evidence for the induction of translocations in oogonia or resting oocytes by fast neutron irradiation was obtained, although there was evidence for X-chromosomal loss after 200 rad to oocytes. The relative biological effectiveness (RBE) for fission neutrons vs. X-rays with respect to dominant lethal induction in oocytes was found to vary with dose, but seamed to be around 1 at lower levels.  相似文献   

13.
Rudolf Büchi 《Genetics》1977,87(1):67-81
Male and female Drosophila melanogaster with special sex chromosome or special autosome constitutions were fed with the mutagenic chemicals Trenimon (2,3,5-trisethyleneimino-1,4-benzoquinone) and PDMT (1-phenyl-3, 3-dimethyltriazene) and with the toxic substance Na2PO3F (sodium monofluorophosphate). The frequency of dominant lethality was recorded among the progeny. The results clearly show that dominant lethality is dose dependent for Trenimon- or PDMT-treated chromosomes in mature sperm and mature oocytes, and an increased amount of chromosomal material per nucleus yields an enhanced lethality. In contrast, a pure toxic effect of Na2PO3F on mature oocytes was demonstrated with one type of female. --With the stocks of Drosophila used, it is possible to distinguish between mutagenic and toxic effects of chemicals on the germ cells. Therefore, dominant lethality can be used as a simple and quick screening test for chemical mutagens.  相似文献   

14.
Female mice were exposed to varying absorbed doses (108–504 rad) of X-rays and mated at different intervals after irradiation (1–7, 8–14, 15–21 and 22–28 days). Uterine contents were examined at late pregnancy in order to detect early fetal deaths (dominant lethality) and malformations in the live fetuses.Two trends were apparent from data on abnormal fetuses. At each weekly interval, the incidence of abnormalities tended to rise with increase in dose, and, at any given dose, the incidence tended to increase with time after irradiation. Dwarfism and exencephaly were the two most common malformations found.The changes in incidence of dominant lethality and of abnormal fetuses with time and with dose follow each other closely, the highest incidence for both being reached in week 3 (59±4.7% for dominant lethals and 12.5±3.1% for abnormal fetuses, after 504 rad) indicating increased radiosensitivity of less mature oocytes. These results parallel those obtained from known genetic effects reported by other workers and suggest that testing for incidence of congenital malformations among offspring of treated animals may prove a useful means of assessing genetic hazards of radiation of chemicals.  相似文献   

15.
E. Vogel 《Mutation research》1973,20(3):339-352
After fluoride treatment of mature and immature oocytes of Drosophila females, a clear-cut dose-dependent decrease in fertility and fecundity was observed. The hatchability of mature oocytes was reduced by as much as 35%. When immature oocytes were treated, a pronounced dose-dependent reduction in fecundity occurred.

Exposure of mature sperm to NaF resulted in a slight decrease in fertility, comparable to the effect obtained with immature oocytes. Of the criteria used to measure possible mutagenic effects of NaF (sex-linked lethals, partial and total X- and Y-chromosome losses), only the rate of total losses was enhanced significantly.

The slight mutagenic effect of NaF on mature sperm was not related to the strong antimutagenic activity observed, when applied simultaneously with any of the several chemical mutagens. NaF treatment drastically reduced both the Trenimon-induced decrease in fertility and Trenimon-induced increases in recessive lethal mutation frequencies and rates of partial and total chromosome losses. The inhibitory effect of NaF was less pronounced with 1-phenyl-3,3-dimethyltriazene (PDT), a poor chromosome breaker in Drosophila, and absent for A 137, a weak mutagen which so far has failed to induce chromosomal aberrations in Drosophila. Therefore, the data are interpreted as being the result of a specific fluoride inhibition of chemically induced chromosomal breakage.

In mature and immature oocytes, the decreases in fertility and fecundity, and increase in recessive lethal frequency (mature oocytes) produced by Trenimon were also suppressed in the presence of fluoride. However, since Trenimon failed to produce a significant rise in X losses and NDJ in both stages, the effect of NaF on these mutational classes was, of course, not testable.  相似文献   


16.
The antineoplastic agent Procarbazine was tested for the induction of genetic damage in Drosophila melanogaster. The compound was administered to adult males by oral application. The following types of genetic damage were measured: (1) sex-linked recessive lethals; (2) dominant lethals; (3) total and partial sex-chromosome loss; and (4) translocations. Procarbazine is highly mutagenic in causing recessive lethal mutations in all stages of spermatogenesis. In sperm a clear-cut concentration-effect relationship is not apparent, but in spermatids such a relationship is obtained for mutation induction at low levels of procarbazine exposure, while at high concentrations the induction of recessive lethals is not a function of concentration. A low induction of total sex-chromosome loss (X,Y) and dominant lethals was observed in metabolically active germ cells (spermatids), but procarbazine failed to produce well-defined breakage events, such as partial sex-chromosome loss (YL,YS) and II-III translocations. The results obtained in Drosophila melanogaster are discussed and compared with the mutational pattern reported in the mouse after procarbazine treatment.  相似文献   

17.
The effects of the radioresistance factor rar-3 on the X-ray induction of various types of genetic damage in immature oocytes (about stage7) of Drosophila melanogaster were studied.

The dose-reduction factors previously postulated for rar-3 with respect to dominant lethals (1.58), sex-linked recessive lethals (1.87), non-disjunction of major chromosomes (1.58), and homologous interchanges (1.58)_were confirmed experimentally. It is concluded that all effects attributed arbitrarily to rar-3 are contributed by the single genetic factor rar-3.

No difference were found in quality of sex-linked recessive lethals (Y suppression, distribution over the X) induced in either rar-3 or rar-3+. Recombination frequencies were normal in unirradiated rar-3.  相似文献   


18.
Repair of X-ray-induced sublethal damage (Elkind-type recovery) in class B oocytes of Drosophila melanogaster was studied. Newly hatched females of two different stocks were treated with either acute or fractionated exposures. For the fractionation experiments a constant time interval of one hour between the dose fractions was used. As genetic endpoints dominant lethality, chromosome aberrations (detachments) and non-disjunction were studied. The repair of X-ray-induced sublethal damage in class B oocytes is expressed as a reappearance on the initial shoulder in the fractionation curve. For dominant lethality it could be shown that less sublethal damage is repaired in oocytes of Berlin wild females than in those of attached-X females (on the average 76 per cent and 101 per cent respectively). Complete repair (about 100 per cent) was observed for detachments in occytes of attached-X females. Within the dose ranges used no radiation effects on non-disjunction could be observed. The results are interpreted to show that in class B oocytes (1) sublethal damage is due to chromosome breaks and/or lesions leading to breaks and (2) X-ray-induced dominant lethality is the consequence of chromosome damage (true dominant lethals).  相似文献   

19.
Ohmi Ohnishi 《Genetics》1977,87(3):519-527
The efficiency of the adult feeding method for EMS treatment in Drosophila melanogaster was studied by measuring the frequency of induced recessive lethals on the second chromosome. The treatment was most effective when mature spermatozoa or spermatids were treated and was much less effective on earlier stages. The number of mutations induced was proportional to the concentration except at the highest doses. The recessive lethal rate was estimated to be about 0.012 per second chromosome per 10(-4) M. In addition, about 0.004-0.005 recessive lethals per 10(-4) M were found in a later generation in chromosomes that had not shown the lethal effect in the previous generation. When the experiments are done in a consistent manner and gametes treated as mature sperm or spermatids are sampled, the results are highly reproducible. However, modifications of the procedure, such as starvation before EMS treatment, can considerably alter the effectiveness of the mutagen.  相似文献   

20.
The combined effect of X-irradiation and transposon mobility on the frequencies of X-linked recessive lethals and dominant lethals was investigated in female hybrids in the P-M system of hybrid dysgenesis. X-linked lethals were measured in G2 hybrid dysgenic females whose X chromosome was derived from the M X P cross. To test for additivity or synergism, the mutation rate in irradiated dysgenic females was compared to that of unirradiated females as well as to irradiated nondysgenic hybrid females derived from M X M crosses. Eggs collected for 2 days after irradiation, were represented by the more radiation-sensitive A and B oocytes (about 75%) and the least sensitive C oocytes (about 25%). The production of X-linked lethal events in X-irradiated dysgenic females was 8.1%, as compared to 4.5% in dysgenic controls and 3.4% in irradiated, nondysgenic controls, demonstrating an additive effect of radiation and dysgenesis-induced genetic damage. The effect of irradiation on sterility of dysgenic hybrid females was a negative one, resulting in 20% less sterility than expected from an additive effect. The combined effect of radiation and dysgenesis on dominant lethality tested in A, B and C oocytes of the same hybrid females was synergistic. Egg broods collected for 3.5 days after irradiation showed that significantly more damage was induced in the presence of ionizing radiation in dysgenic females than in their nondysgenic counterparts. This effect was most obvious in B and C oocytes. The synergism observed may be related to the inability of cells to repair the increased number of chromosome breaks induced both by radiation and transposon mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号