首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amputation of the lizard tail is followed by its complete regeneration over a period of six-eight months. The new tail is innervated only by the last three pairs of spinal nerves upstream from the plane of amputation, since no nerve cells are present in the regenerated. The corresponding dorsal root ganglia increase in volume (hypertrophic ganglia) and most of their sensory neurons become hypertrophic. Satellite cells belonging to this hypertrophic ganglia increase in number. This paper describes an autoradiographic study, after administration of tritiated thymidine, of the hypertrophic dorsal root ganglia of the lizard during tail regeneration. We evaluated the number of satellite cells which neo-synthetize DNA ("labeling index = LI%) and are therefore suitable to undergo cell division. The LI% was significatively increased in hypertrophic ganglia when compared to internal control ganglia (not directly involved in the reinnervation process) and normal ganglia (lizards with intact tails). The comparison between internal control ganglia and normal ganglia showed higher LI% values in the formers, although this difference was not statistically significative. These results are in line with those obtained by other authors and suggest that satellite cells of dorsal root ganglia can undergo cellular proliferation also in the adult, especially in particular experimental conditions.  相似文献   

2.
We studied the ratios between number of neuroglial (=satellite) cells and number and volume of neurons with which they are associated in the spinal ganglia of two species of reptiles (lizard and gecko) and three species of mammals (mouse, rat, and rabbit). In all five species, we found that the number of satellite cells associated with a nerve cell body increased with increasing volume of the latter. This result shows that there is a quantitative balance between neuroglia and nerve tissue in spinal ganglia. This balance seems to be maintained by a tight regulation of the number of satellite cells. We also found that the mean volume of nerve cell body corresponding to a satellite cell was lower for small neurons than for large ones. Since satellite cells metabolically support spinal ganglion neurons, the metabolic needs of small neurons are better satisfied than those of large ones. For a nerve cell body of a given size, the number of associated satellite cells did not differ between the lizard and gecko, nor between the mouse, rat, and rabbit. However, this number was significantly smaller in the reptiles than in the mammals. This result could be explained by the lower metabolic rate in the nervous system of poikilotherms than mammals, or could have a phylogenetic significance. These two interpretations are not mutually exclusive.  相似文献   

3.
During the regeneration of lizard tail, nerves sprouting from ganglia and the spinal cord invade the blastema as far as the apical epidermis. Electron microscopical observations reveal axons storing dense granules (dg) and dense core vesicles (dcv) which are concentrated in nerve terminals or in axoplasmatic regions. In the regenerating spinal cord (SC) these terminals resemble aminergic-peptidergic endings and grow as far as the distal portion of the SC, which is made up of irregularly arranged ependymal cells. Some axons storing dcv contact blastematic cells and other nerve terminals show a plasma membrane incomplete or broken. Whether this latter aspect is due to fixation artifacts or physiological rupture is unknown. Nerves containing dcv and a few dg also originate from spinal ganglia innervating the regenerating tail. The accumulation of material into these endings is probably slow and a possible trophic influence on the regeneration of lizard tail is discussed.  相似文献   

4.
Summary A careful search for groups of nerve cell bodies enclosed within a common connective envelope was made in the spinal ganglia of the lizard and rat using a serial-section technique. Nerve cell bodies sharing a common connective envelope were found to be more common in the lizard (9.4%) than in the rat (5.6%). These nerve cell bodies were arranged in pairs, or, less frequently, in groups of three. At times, they appeared to be in immediate contact, with no intervening satellite cells; at other, they remained separated from one another by a satellite cell sheet. The clusters of nerve cell bodies enclosed within a common connective envelope probably result from the arrest of developmental processes in the spinal ganglion. It is possible that, as a result of the cell arrangement here described, certain neurons electrically influence other sensory neurons at the level of the ganglion.  相似文献   

5.
Summary The ultrastructure of neurons in spinal ganglia of the domestic fowl poisoned with tri-ortho-cresyl-phosphate (TOCP) shows characteristic changes. The light neurons react to TOCP by a marked increase in the number of neurofilaments. These neurons also contain mitochondria in various degenerative stages. Several of the altered mitochondria show an increasing osmiophilia. Some of the darker neurons display a hypertrophy of the endoplasmic reticulum or a relative increase of neurofilaments. The mitochondria in some of these cells show early stages of degeneration. These changes appear 13 days after TOCP ingestion.  相似文献   

6.
7.
The process of tail regeneration in the tuatara (Sphenodon punctatus) is not entirely known. Similarity to and differences from lizard tail regenerations are indicated in the present histological and ultrastructural study. Regeneration is influenced by the animal's age and ambient temperature, but in comparison to that of lizards it is very slow and tends to produce outgrowths that do not reach the length of the original tail. Although microscopically similar to lizard blastemas, the mesenchyme rapidly gives rise to a dense connective tissue that contains few muscle bundles, nerves, and fat cells. The unsegmented cartilaginous tube forming the axial skeleton is not calcified after 5 months of regeneration, but calcification in the inner region of the cartilage, present after 10 months, increases thereafter. Amyelinic and myelinic peripheral nerves are seen within the regenerating tails of 2–3 mm in length and the spinal cord forms an ependymal tube inside a cartilaginous casing. Tissues of the original tail, like muscles, vertebrae and the adipose mass, are largely replaced by dense connective tissue that occupies most of the volume of the new tail at 5 and 10 months of regeneration. It is unknown whether the differentiation of the dense connective tissue is caused by the relatively low temperature that this species lives under or stems from a genetic predisposition toward scarring as with most other amniotes. Increases of muscle and adipose tissues seen in older regenerated tails derive from somatic growth of the new tail in the years following tail loss and not from a rapid regeneration process like that in lizards.  相似文献   

8.
The amount of neurons of periprostatic accessory ganglia in pre- and peripubertal rats was studied to ascertain whether the development of these autonomic ganglia is androgen-dependent. Stereological estimates of the volumes and number of neurons immunoreactive to protein gene product 9.5 (PGP 9.5), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) were carried out. Immunostaining of androgen receptors (AR) in the ganglia was also performed. The ganglionic neurons from the two groups studied were immunoreactive to PGP 9.5, NPY, and VIP. Almost all the neurons were immunostained for AR. The ganglionic volume showed a significant increase in peripubertal prostate in comparison with the prepubertal gland. No significant changes were observed with respect to the absolute number of neurons immunoreactive to all the antigens. The neuronal volume was significantly increased in peripubertal rats in comparison with prepubertal animals. These findings led us to the following conclusions: There is no evidence of neurogenesis during pubertal development in the periprostatic accessory ganglia of the rat. The increase of ganglionic volume in puberty is due to the growth in neuronal volume. There were no differences between the sizes of NPY and VIP neurons in pubertal periprostatic accessory ganglia. The development of periprostatic vegetative neurons is androgen-dependent.  相似文献   

9.
The present study was aimed at disclosing which spinal ganglia contribute to the innervation of the adrenal gland in the pig with special regard to the morphology and intraganglionic distribution of the primary sensory neurons within these ganglia. To this end, the animals were injected with a retrograde fluorescent neuronal tracer Fast Blue into the left adrenal gland during laparotomy. After a survival period of three weeks, labelled spinal sensory neurons were found in the ipsilateral dorsal root ganglia (approximately 99% of all retrogradely marked neurons). However, single adrenal gland-projecting perikarya were observed also in the contralateral dorsal root ganglia from Th3 to L3. The majority of the retrogradely labelled afferent neurons (above 65% of all Fast Blue-positive (FB+) perikarya) were located in two groups of spinal ganglia (at neuromeres Th6-7 and Th12-14, approximately 18% and 47% of neurons, respectively), forming two distinct multiganglionic centres of origin for this neural pathway. The morphometric evaluation of FB+ neurons revealed that the vast majority of them (approximately 81%) belonged to the class of small-sized perikarya (10-30 microm in diameter), while the medium-sized (diameter 30-80 microm) and large neurons comprised only up to 13% and 6.5% of adrenal gland-projecting neurons, respectively. Furthermore, the analysis of the intraganglionic distribution pattern of the retrogradely labelled cells revealed that the highest number of them was located in the medio-caudal domain of the dorsal root ganglia, irrespective of the neuromere studied. Thus, the present study has revealed sources and morphological characteristic of spinal afferent neurons supplying the porcine adrenal gland, simultaneously pointing out to the characteristic features of their inter- and intraganglionic distribution pattern.  相似文献   

10.
Light and electron microscope studies indicate that the old ependyma just proximal to the plane of amputation in early lizard tail regenerates shows a sequence of morphological changes which suggests that it as well as the new ependyma growing into the regenerate may play an active role in the initiation and maintenance of early tail regeneration. The old ependyma close to the plane of amputation undergoes hypertrophy and/or hyperplasia causing a partial closure of the central canal and pseudostratification. Its nuclei shift from an original apical position to a basal one. The ependymal processes become more prominent and extend to the pia, a condition not found more rostrally. There is also a significant increase in the amount of Golgi substance and a moderate increase in the rough endoplasmic reticulum. These observations lead to the thought that these cellular changes may be an expression of enhanced secretion and other activities in the old and new ependyma just proximal or distal to the plane of amputation.  相似文献   

11.
During spinal cord (SC) regeneration in the tail of amphibians and lizards, small neurons in contact with the central canal and cerebrospinal fluid (CSF) are formed. The present review summarizes previous and recent studies that have characterized most of these neurons as cerebrospinal fluid-contacting neurons (CSFCNs), especially in the regenerating caudal SC of lizards. CSFCNs form tufts of stereocilia immersed in the CSF, secrete exosomes, and are often in contact with a secreted protein-rod indicated as Reissner fiber. Ultrastructural, autoradiographic, immunohistochemical, and behavioral studies strongly indicate that most of these cells are mechanoreceptors that differentiate from ependymal cells within 20–30 days after SC amputation. Numerous CSFCNs are gamma amino-butyric acid (GABA)-ergic, uptake amino acids, receive few synaptic boutons, and contain neurofilaments, fibroblast growth factor (FGFs), and other signaling proteins, the latter likely secreted into the central canal. Similar neurons are formed in the SC of the tuatara (Sphenodon puctatus), anurans, and urodeles during tail regeneration. In lizard, most of their projection remains in the SC close to the regenerated tail, but they form synapses with neurons that receive descending nerves from the brainstem, including vestibular nuclei. CSFCNs, aside a possible neurosecretory activity, might sense liquor movements for maintenance of balance, a role that is supported from recent studies on other caudate vertebrates. The regeneration of these cells also in the nervous system of other vertebrates remains unknown.  相似文献   

12.
In the regenerating newt tail, epimorphic regeneration--which recapitulates morphologically normal embryonic development--proceeds along a rostrocaudal differentiation gradient. Innervation of the new myomeres results from the spinal roots of segments rostral to the amputation plane and from ventral roots emerging from the lateroventral region of the regenerating spinal cord, in which motor neurons are differentiating. Electron microscopy and an indirect immunofluorescence study with anti-glial fibrillary acid protein (GFAP) confirm that the ventrolateral part of the regenerated ependymal tube gives rise to cells of the ventral root sheath and the spinal ganglia. Anti-GFAP and anti-neurofilament antibodies showed that ependymoglial cells and Schwann cells may play a role in neuronal pathfinding by helping guide and stabilize pioneering axons as they extend toward the myomeres. The carbohydrate epitope NC-1 is expressed in the spinal cord, in sheath cells of the spinal ganglia and in the non-myelin-forming Schwann cells of the peripheral nervous system. L1, a Ca++ independent neural cell adhesion molecule, was detected in the axonal compartments of the regenerating spinal cord, on immature and/or non-myelin-forming Schwann cells within the peripheral nervous system (PNS), and on nerve fibers within the regenerate. These immunohistochemical observations collectively support the hypothesis that Schwann cells already present in the blastema could be involved in organizing neural pathways.  相似文献   

13.
A preparation of the sensory neuron of the spinal ganglion with dendritic processes for simultaneous morphological and physiological investigations is described. It consists of a frog urinary bladder with bushy interoceptors in its wall, two vesicle neurons, two abdominal branches of the X spinal nerves and two IX spinal ganglia with ventral and dorsal roots branching off from them. The total length from the receptors to the ganglion neurons is 20-30 mm. In the ganglia a zone of the neuronal bodies localization is found, their processes form receptors; the zone includes as many as 9 neurons, 50-80 mkm in size. A vital fine structure of the ganglion cells and their satellites is traced. There are three types of cells in the ganglion--large, middle and small. Electrophysiological control has demonstrated that the preparation is viable for several hours.  相似文献   

14.
熊波  李怀斌 《蛇志》2004,16(2):1-3
目的 观察眼镜蛇毒对脊髓和脊神经节一氧化氮合酶(NOS)表达的影响。方法 将眼镜蛇毒注入大鼠右侧大腿后部,采用还原型尼克酰胺嘌呤二核苷酸脱氢酶(NADPH.d)法显示NOS的表达。结果 在眼镜蛇毒注射组,脊髓和脊神经节内的NOS阳性神经元和深染NOS阳性神经元明显多于注入生理盐水组和正常对照组。结论 注入眼镜蛇毒能上调大鼠脊髓和脊神经节NOS表达。  相似文献   

15.
The regenerated tail of the New Zealand gecko Hoplodactylus maculatus is equipped with an elastic cartilaginous tube as skeletal axis. Other lizard species and Sphenodon punctatus possess variably developed hyaline cartilaginous tubes. Moreover, H. maculatus enhances the functional performance of its tail by long elastic fibres, which are arranged all around the central regenerated spinal cord. The different characteristics of the regenerated skeleton could be related to the different environments that the species studied occupy in nature.  相似文献   

16.
In this study we examined the expression of P2X(3) receptor in mouse embryos from E9.5 to E14.5 using immunohistochemistry. We found a uniform labeling in the developing trigeminal and dorsal root ganglia (DRG), while adult DRG and trigeminal ganglia expressed P2X(3) only in small-diameter neurons. In the brainstem, the mesencephalic trigeminal and facial motor nuclei were immunoreactive for P2X(3). P2X(3) was also transiently expressed in the developing brain, and precursors of spinal motor neurons. We also detected immunolabeling in the paravertebral sympathetic chain ganglia, in the sympathoadrenal cells and in non-neural tissues including testis, epidermis, wall of the aorta, as well as in subepidermal structures and mesenchymal tissues of limbs, branchial arches and tail.  相似文献   

17.
By means of horseradish peroxidase administration into the wall of the sigmoid colon central part, localization, relative amount, body forms and size of the neurons, dealing with innervation of the given part of the colon have been determined. Labelled neurons are present in the colon wall, in ganglia of the caudal mesenteric artery nervous plexus, in the caudal and cranial mesenteric ganglia in the celiac plexus ganglia, in nodes and internodal branches of the lumbar part of the sympathetic trunk (the left one predominantly) and in the spinal ganglia from TXIII up to LVII. In the grey substance of the spinal cord labelled neurons are not revealed. The main part of the postganglionar sympathetic neurons, projecting their axons to the sigmoid colon, are situated in the caudal mesenteric ganglion. In the spinal ganglia the most part of the labelled neurons are to the left at the level of LII-LVI, to the right--at the level of LII-LV. The optimal time for revealing the greatest number of the labelled neurons are the 1st-3d days after administration of the enzyme. Capture of the lable takes place later in the neurons of those ganglia, which are situated more further from the place of peroxidase administration.  相似文献   

18.
The pelvic ganglia are mixed ganglia containing both sympathetic and parasympathetic neurons that receive spinal input via the hypogastric (lumbar cord) and pelvic nerves (sacral cord), respectively. A recent study has utilised immunohistochemistry against synaptophysin (a protein associated with small vesicles) to visualise the preganglionic terminals in these ganglia. By selectively cutting the hypogastric or pelvic nerves and allowing subsequent terminal degeneration, the populations of parasympathetic and sympathetic preganglionic terminals, respectively, can be visualised. The present study has used this method in conjunction with retrograde labelling of pelvic neurons from the distal colon and double label immunofluorescence against tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) to identify and characterise the sympathetic and parasympathetic neurons projecting to the distal colon from the major pelvic ganglia of the male rat. Approximately equal numbers of distal colonic-projecting pelvic neurons are sympathetic and parasympathetic. Almost all noradrenergic neurons are sympathetic. Of the VIP neurons that project to the distal colon approximately one third are sympathetic, one third parasympathetic and the remaining third are possibly innervated by both the lumbar and sacral cord. Extrapolation from our results also suggests that the majority of non-noradrenergic neuropeptide Y neurons (which are known to comprise the remainder of the neurons) are parasympathetic. These studies have demonstrated that the pelvic ganglia are a major source of sympathetic innervation to the distal bowel and have further shown that the distal colon is another target for the non-noradrenergic sympathetic neurons of the pelvic ganglia.  相似文献   

19.
Using an antibody against a lizard telomerase‐1 component the presence of telomerase has been detected in regenerating lizard tails where numerous cells are proliferating. Immunoblots showed telomerase positive bands at 75–80 kDa in normal tissues and at 50, 75, and 90 kDa in those regenerating. Immunofluorescence and ultrastructural immunolocalization showed telomerase‐immunoreactivity in sparCe (few/diluted) mesenchymal cells of the blastema, early regenerating muscles, perichondrium of the cartilaginous tube, ependyma of the spinal cord, and in the regenerating epidermis. Clusters of gold particles were detected in condensing chromosomes of few mesenchymal and epithelial cells in the regenerating tail, but a low to undetectable labeling in interphase cells. Telomerase‐immunoreactivity was intense in the nucleus and sparCe (few/diluted) in the cytoplasm of spermatogonia and spermatocytes and drastically decreased in early spermatids where some nuclear labeling remains. Some intense immunoreactivity was seen in few cells near the basal membrane of intestinal enterocytes or in leukocytes (likely lymphocytes) of the intestine mucosa. In spermatogonia, spermatids and in enterocytes part of the nuclear labeling formed cluster of gold particles in dense areas identified as Cajal Bodies, suggesting that telomerase is a marker for these stem cells. This therefore suggests that also the sparCe (few/diluted) telomerase positive cells detected in the regenerating tail may represent sparCe (few/diluted) stem cells localized in regenerating tissues where transit amplifying cells are instead preponderant to allow for tail growth. This observation supports previous studies indicating that few stem cells are present in the stump after tail amputation and give rise to transit amplifying cells for tail regeneration. J. Morphol. 276:748–758, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
本研究应用乙醛酸诱发儿茶酚胺(CA)荧光技术观察大鼠肾上腺素(NA)能神经在脊神经节内的分布;并应用HRP顺、逆行追踪技术对脊神经节内NA能神经纤维的起源及其与脊神经节神经元的关系进行了探讨。荧光组织化学观察发现、有些神经节神经元胞体周围分布有带膨体的NA能神经末梢;有的紧密围绕脊神经节细胞——卫星细胞复合体。颈上交感神经节内注射霍乱毒素B亚单位结合HRP(CB┐HRP),在同侧C3~6节段脊神经节内可见标记的点状纤维末梢紧邻于节细胞旁。T11~L2节段脊神经节内注射HRP后,在同侧椎旁交感链(T9~L1)内可见标记的交感节后神经元胞体。上述实验结果表明,交感节后神经元发出节后纤维可直接到达脊神经节内,与节细胞发生接触。本研究提示、交感神经在脊神经节水平可能参与躯体初级传入信息的调制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号