首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas-liquid mass transfer properties of shaken 96-well microtiter plates were characterized using a recently described method. The maximum oxygen transfer capacity (OTR(max)), the specific mass transfer area (a), and the mass transfer coefficient (k(L)) in a single well were determined at different shaking intensities (different shaking frequencies and shaking diameters at constant filling volume) and different filling volumes by means of sulfite oxidation as a chemical model system. The shape (round and square cross-sections) and the size (up to 2 mL maximum filling volume) of a microtiter plate well were also considered as influencing parameters. To get an indication of the hydrodynamic behavior of the liquid phase in a well, images were taken during shaking and the liquid height derived as a characteristic parameter. The investigations revealed that the OTR(max) is predominantly dependent on the specific mass transfer area (a) for the considered conditions in round-shaped wells. The mass transfer coefficient (k(L)) in round-shaped wells remains at a nearly constant value of about 0.2 m/h for all shaking intensities, thus within the range reported in the literature for surface-aerated bioreactors. The OTR(max) in round-shaped wells is strongly influenced by the interfacial tension, determined by the surface tension of the medium used and the surface properties of the well material. Up to a specific shaking intensity the liquid surface in the wells remains horizontal and no liquid movement can be observed. This critical shaking intensity must be exceeded to overcome the surface tension and, thus, to increase the liquid height and enlarge the specific mass transfer area. This behavior is solely specific to microtiter plates and has not yet been observed for larger shaking bioreactors such as shaking flasks. In square-shaped microtiter plate wells the corners act as baffles and cause a significant increase of OTR(max), a, and k(L). An OTR(max) of up to 0.15 mol/L/h can be reached in square-shaped wells.  相似文献   

2.
A new online monitoring technique to measure the physiological parameters, dissolved oxygen (DO) and pH of microbial cultures in continuously shaken 24-well microtiter plates (MTP) is introduced. The new technology is based on immobilised fluorophores at the bottom of standard 24-well MTPs. The sensor MTP is installed in a sensor dish reader, which can be fixed on an orbital shaker. This approach allows real online measurements of physiological parameters during continuous shaking of cultures without interrupting mixing and mass transfer like currently available technologies do. The oxygen transfer conditions at one constant shaking frequency (250 1/min) and diameter (25 mm) was examined with the chemical sulphite oxidation method. Varied filling volumes (600–1,200 μL) of Escherichia coli cultures demonstrated the importance of sufficient oxygen transfer to the culture. Cultures with higher filling volumes were subjected to an oxygen limitation, which influenced the cell metabolism and prolongated the cultivation time. The effects could be clearly monitored by online DO and pH measurements. A further study of different media in an E. coli fermentation elucidated the different growth behaviour in response to the medium composition. The MTP fermentations correlated very well with parallel fermentations in shake flasks. The new technique gives valuable new insights into biological processes at a very small scale, thus enabling parallel experimentation and shorter development times in bioprocessing.  相似文献   

3.
The maximum gas-liquid mass transfer capacity of 250ml shaking flasks on orbital shaking machines has been experimentally investigated using the sulphite oxidation method under variation of the shaking frequency, shaking diameter, filling volume and viscosity of the medium. The distribution of the liquid within the flask has been modelled by the intersection between the rotational hyperboloid of the liquid and the inner wall of the shaking flask. This model allows for the calculation of the specific exchange area (a), the mass transfer coefficient (k(L)) and the maximum oxygen transfer capacity (OTR(max)) for given operating conditions and requires no fitting parameters. The model agrees well with the experimental results. It was furthermore shown that the liquid film on the flask wall contributes significantly to the specific mass transfer area (a) and to the oxygen transfer rate (OTR).  相似文献   

4.
The detailed engineering characterisation of shaken microtitre-plate bioreactors will enhance our understanding of microbial and mammalian cell culture in these geometries and will provide guidance on the scale-up of microwell results to laboratory and pilot scale stirred bioreactors. In this work computational fluid dynamics (CFD) is employed to provide a detailed characterisation of fluid mixing, energy dissipation rate and mass transfer in single well bioreactors from deep square 24-well and 96-well microtitre plates. The numerical predictions are generally found to be in good agreement with experimental observation of the fluid motion and measured values of the key engineering parameters. The CFD simulations have shown that liquid mixing is more intensive in 96-well than in 24-well bioreactors due to a significant axial component to the fluid velocity. Liquid motion is strongly dependent on the orbital shaking amplitude which generally has a greater impact than the shaking frequency. Average power consumptions of 70–100 W m−3 and 500–1000 W m−3, and overall mass transfer coefficient, kLa, values of 0.005–0.028 s−1 and 0.056–0.10 s−1 were obtained for 24-well and 96-well bioreactors respectively at an orbital shaking amplitude of 3 mm and shaking frequencies ranging from 500 rpm to 1500 rpm. The distribution of energy dissipation rates within each bioreactor showed these to be greatest at the walls of the well for both geometries. Batch culture kinetics of E. coli DH5 showed similar maximum specific growth rates and final biomass yields in shaken 24-well and shake flask bioreactors and in stirred miniature and 20 L bioreactors at matched kLa values. The CFD simulations thus give new insights into the local and overall engineering properties of microwell bioreactor geometries and further support their use as high throughput tools for the study and optimisation of microbial and mammalian cell culture kinetics at this scale.  相似文献   

5.
Microtiter plates with integrated optical sensing of dissolved oxygen were developed by immobilization of two fluorophores at the bottom of 96-well polystyrene microtiter plates. The oxygen-sensitive fluorophore responded to dissolved oxygen concentration, whereas the oxygen-insensitive one served as an internal reference. The sensor measured dissolved oxygen accurately in optically well-defined media. Oxygen transfer coefficients, k(L)a, were determined by a dynamic method in a commercial microtiter plate reader with an integrated shaker. For this purpose, the dissolved oxygen was initially depleted by the addition of sodium dithionite and, by oxygen transfer from air, it increased again after complete oxidation of dithionite. k(L)a values in one commercial reader were about 10 to 40 h(-1). k(L)a values were inversely proportional to the filling volume and increased with increasing shaking intensity. Dissolved oxygen was monitored during cultivation of Corynebacterium glutamicum in another reader that allowed much higher shaking intensity. Growth rates determined from optical density measurement were identical to those observed in shaking flasks and in a stirred fermentor. Oxygen uptake rates measured in the stirred fermentor and dissolved oxygen concentrations measured during cultivation in the microtiter plate were used to estimate k(L)a values in a 96-well microtiter plate. The resulting values were about 130 h(-1), which is in the lower range of typical stirred fermentors. The resulting maximum oxygen transfer rate was 26 mM h(-1). Simulations showed that the errors caused by the intermittent measurement method were insignificant under the prevailing conditions.  相似文献   

6.
A new scalable reactor was developed by applying a novel mixing principle that allows the large-scale cultivation of mammalian cells simply with surface aeration using air owing to increased liquid-gas transfer compared to standard stirred-tank bioreactors. In the cylindrical vessels (50 mL-1500 L) with a helical track attached to the inside wall, the liquid moved upward onto the track as the result of orbital shaking to increase the liquid-gas interface area significantly. This typically resulted in a 5-10-fold improvement in the volumetric mass transfer coefficient (k(L)a). In a 1500-L helical track vessel with a working volume of 1000 L, a k(L)a of 10h(-1) was obtained at a shaking speed of 39 rpm. Cultivations of CHO cells in a shaken 55-L helical track bioreactor resulted in improved cell growth profiles compared to control cultures in standard systems. These results demonstrated the possibility of using these new bioreactors at scales of 1000 L or more.  相似文献   

7.
The influence of oxygen transfer rate (OTR) on the molecular mass of alginate was studied. In batch cultures without dissolved oxygen tension (DOT) control and at different agitation rates, the DOT was nearly zero and the OTR was constant during biomass growth, hence the cultures were oxygen-limited. The OTR reached different maximum levels (OTRmax) and enabled to establish various relative respiration rates. Overall, the findings showed that OTR influences alginate molecular mass. The mean molecular mass (MMM) of the alginate increased as OTRmax decreased. The molecular mass obtained at 3.0 mmol l−1 h−1 was 7.0 times higher (1,560 kDa) than at 9.0 mmol l−1 h−1 (220 kDa). An increase in molecular mass can be a bacterial response to adverse nutritional conditions such as oxygen limitation.  相似文献   

8.
To check for possible mass transfer limitations of oxygen and/or carbon dioxide in kinetic experiments on microbial desulphurization of coal, it is important to properly measure the volumetric mass transfer coefficient (k(L)a) especially at high slurry densities. Volumetric mass transfer coefficients of oxygen, at different solid hold-up values (epsilon(s) = 0 to 0.28) of coal slurries (d(par) < 100 * 10(-6) m), were measured in a lab scale fermentor and in a lab scale pachuca tank, using the dynamic gas-liquid absorption method. It was shown that serious errors could occur due to oxygen adsorption at the coal surface. Using the data of an independently measured adsorption isotherm, the real k(L)a could be calculated from the measured apparent k(L)a. The results show a k(L)a decrease of 40% to 50% at a volumetric solid hold-up of 28%. Estimation of the oxygen and carbon dioxide transfer rates, from the measured mass transfer coefficients, indicates that the stirred fermentor is suitable for kinetic experiments at high slurry densities, whereas the pachuca tank and shake flask are not. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
Most experiments in screening and process development are performed in shaken bioreactors. Today, microtiter plates are the preferred vessels for small‐scale microbial cultivations in high throughput, even though they have never been optimized for this purpose. To interpret the experimental results correctly and to obtain a base for a meaningful scale‐up, sufficient oxygen supply to the culture liquid is crucial. For shaken bioreactors this problem can generally be addressed by the introduction of baffles. Therefore, the focus of this study is to investigate how baffling and the well geometry affect the maximum oxygen transfer capacity (OTRmax) in microtiter plates. On a 48‐well plate scale, 30 different cross‐section geometries of a well were studied. It could be shown that the introduction of baffles into the common circular cylinder of a microtiter plate well doubles the maximum oxygen transfer capacity, resulting in values above 100 mmol/L/h (kLa > 600 1/h). To also guarantee a high volume for microbial cultivation, it is important to maximize the filling volume, applicable during orbital shaking. Additionally, the liquid height at the well bottom was examined, which is a decisive parameter for online‐monitoring systems such as the BioLector. This technology performs fiber‐optical measurements through the well bottom, therefore requires a constant liquid height at all shaking frequencies. Ultimately, a six‐petal flower‐shaped well geometry was shown to be the optimal solution taking into account all aforementioned criteria. With its favorable culture conditions and the possibility for unrestricted online monitoring, this novel microtiter plate is an efficient tool to gain meaningful results for interpreting and scaling‐up experiments in clone screening and bioprocess development. Biotechnol. Bioeng. 2009;103: 1118–1128. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Oxygen limitation is a pitfall during screening for industrial strains   总被引:1,自引:0,他引:1  
Oxygen supply is a key parameter in aerobic fermentation processes like the industrial production of amino acids. Although the oxygen transfer rate (OTR; or the volumetric oxygen transfer coefficient kLa) is routinely analyzed by engineers during stirred tank fermentations, it is often not taken into account by biologists conducting screening experiments in shake flasks. To show the importance of knowing how to avoid oxygen transfer limitations during primary screenings, Corynebacterium glutamicum ATCC 13032 (wild-type strain) and DSM 12866 (lysine-producing strain) were cultivated in shake flasks with different culture liquid volumes and under different shaking conditions. With the Respiration Activity Monitoring System, the OTR was determined quasi-continuously. Optical density as well as concentrations of lysine and byproducts (lactate, acetate, succinate) were determined off-line and correlated with the OTR signal. From the results, design criteria for improved screening in shaken bioreactors that help to avoid selection of suboptimal strains during early process development steps can be derived. Finally, the suitability of DSM 12866 as a strain for industrial processes with a high space–time yield is discussed.  相似文献   

11.
The influence of oxygen on glycerol production by an osmophilic yeast, Candida magnoliae I(2)B, was studied in a bioreactor. Oxygen transfer rates (OTRs) and volumetric oxygen transfer coefficients (k(L)a) were determined at different aeration and agitation rates. Cell growth as well as glycerol production was strongly affected by oxygen supply. Improvement in OTRs resulted in increased cell growth and glycerol yield. However, at high OTRs, there was a reduction in glucose uptake rate, indicating Pasteur Effect, and glycerol accumulation was also reduced at k(L)a of 253 h(-1). The availability of oxygen per unit of cell mass was found to be the most important factor that controlled cell growth, glucose uptake, and glycerol yield. The overall productivity and yield of glycerol could be related with k(L)a. The biosynthesis of glycerol was found to both growth- and non-growth-associated, although glycerol was mainly produced in post-exponential phase.  相似文献   

12.
Rava P  Hussain MM 《Biochemistry》2007,46(43):12263-12274
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of neutral-lipid-rich apolipoprotein B (apoB) lipoproteins. Previously we reported that the Drosophila MTP transfers phospholipids but does not transfer triglycerides. In contrast, human MTP transfers both lipids. To explore the acquisition of triglyceride transfer activity by MTP, we evaluated amino acid sequences, protein structures, and the biochemical and cellular properties of various MTP orthologues obtained from species that diverged during evolution. All MTP orthologues shared similar secondary and tertiary structures, associated with protein disulfide isomerase, localized to the endoplasmic reticulum, and supported apoB secretion. While vertebrate MTPs transferred triglyceride, invertebrate MTPs lacked this activity. Thus, triglyceride transfer activity was acquired during the transition from invertebrates to vertebrates. Within vertebrates, fish, amphibians, and birds displayed 27%, 40%, and 100% triglyceride transfer activity compared to mammals. We conclude that MTP triglyceride transfer activity first appeared in fish and speculate that the acquisition of triglyceride transfer activity by MTP provided for a significant advantage in the evolution of larger and more complex organisms.  相似文献   

13.
14.
Oxygenation is an important parameter involved in the design and operation of mixing-sparging bioreactors and it can be analyzed by means of the oxygen mass transfer coefficient (k(L)a). The operational conditions of a stirred, submerged aerated 2-L bioreactor have been optimized by studying the influence of a second liquid phase with higher oxygen affinity (perfluorodecalin or olive oil) in the k(L)a. Using k(L)a measurements, the influence of the following parameters on the oxygen transfer rate was evaluated: the volume of working medium, the type of impellers and their position, the organic phase concentration, the aqueous phase composition, and the concentration of inactive biomass. This study shows that the best experimental conditions were achieved with a perfluorodecalin volume fraction of 0.20, mixing using two Rushton turbines with six vertical blades and in the presence of YPD medium as the aqueous phase, with a k(L)a value of 64.6 h(-1). The addition of 20% of perfluorodecalin in these conditions provided a k(L)a enhancement of 25% when pure water was the aqueous phase and a 230% enhancement when YPD medium was used in comparison to their respective controls (no perfluorodecalin). Furthermore it is shown that the presence of olive oil as a second liquid phase is not beneficial to the oxygen transfer rate enhancement, leading to a decrease in the k(L)a values for all the concentrations studied. It was also observed that the magnitude of the enhancement of the k(L)a values by perfluorodecalin depends on the biomass concentration present.  相似文献   

15.
Disposable orbitally shaken bioreactors are a promising alternative to stirred or wave agitated systems for mammalian and plant cell cultivation, because they provide a homogeneous and well‐defined liquid distribution together with a simple and cost‐efficient design. Cultivation conditions in the surface‐aerated bioreactors are mainly affected by the size of the volumetric oxygen transfer area (a) and the volumetric power input (P∕VL) that both result from the liquid distribution during shaking. Since Computational Fluid Dynamics (CFD)—commonly applied to simulate the liquid distribution in such bioreactors—needs high computing power, this technique is poorly suited to investigate the influence of many different operating conditions in various scales. Thus, the aim of this paper is to introduce a new mathematical model for calculating the values of a and P∕VL for liquids with water‐like viscosities. The model equations were derived from the balance of centrifugal and gravitational forces exerted during shaking. A good agreement was found among calculated values for a and P∕VL, CFD simulation values and empirical results. The newly proposed model enables a time efficient way to calculate the oxygen transfer areas and power input for various shaking frequencies, filling volumes and shaking and reactor diameters. All these parameters can be calculated fast and with little computing power. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1441–1456, 2014  相似文献   

16.
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

17.
18.
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.  相似文献   

19.

Background

Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation.

Results

A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures.

Conclusion

The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/? 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.
  相似文献   

20.
The aim of this study was to gain a better understanding of orbitally shaken bioreactors (OSRs) operated without controllers for pH and dissolved oxygen (DO) concentration. We used cylindrical OSRs with working volumes ranging from 250mL to 200L to determine that the volumetric mass transfer coefficient of oxygen (k(L)a) is a good predictor of the performance of OSRs at different scales. We showed that k(L)a values of 7-10hour(-1) were required to avoid DO limitations and to prevent conditions of low pH during the cultivation of CHO cells. Overall, cell cultures in probe-independent OSRs of different nominal volumes ranging from 250mL to 200L achieved similar cell densities, recombinant protein concentrations, and pH and DO profiles when having the same k(L)a. We conclude that k(L)a is a key parameter for probe-independent bioprocesses in OSRs and can be used as a scale-up factor for their operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号