首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragments of ascidian eggs, but at random in any plane and ranging in size from 10 to 90% of the total egg volume, displayed the electrical characteristics of the intact egg, having a resting potential of -86 mV and giving rise to an action potential upon stimulation by electrical current injection. Following insemination, the fragments generated fertilization potentials, comparable to those of intact eggs, although the repolarization phase was shorter. Our data show that there are sufficient ion channels throughout the egg surface to generate action potentials and fertilization potentials in excised egg fragments, irrespective of their global origin. Furthermore, the fertilizing spermatozoon is capable of activating fertilization channels in areas of the egg plasma membrane not destined for sperm entry.  相似文献   

2.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

3.
The early events of fertilization that precede and cause activation of an egg have not been fully elucidated. The earliest electrophysiological change in the sea urchin egg is a sperm-evoked increase of the egg's membrane conductance. The resulting depolarization facilitates entry of the fertilizing sperm and precludes the entry of supernumerary sperm. The sequence of the increase in the egg's membrane conductance, gamete membrane fusion, egg activation, and sperm entry, including causal relationships between these events, are not known. This study reports the use of whole egg voltage clamp and loose patch clamp to monitor simultaneously changes of membrane conductance and capacitance at the site of sperm-egg contact. Measurements were made during sperm-egg interactions where sperm entry readily proceeded or was precluded by maintaining the egg's membrane potential either at large, negative values or at positive values. Whenever the sperm evoked an increase of the egg's membrane conductance, that increase initiated abruptly, was localized to the site of sperm attachment, and was accompanied by a simultaneous abrupt increase of the membrane capacitance. This increase of capacitance indicated the establishment of electrical continuity between gametes (possibly fusion of the gametes' plasma membranes). If sperm entry was blocked by large negative membrane potentials, the capacitance cut off rapidly and simultaneously with a decrease of the membrane conductance, indicating that electrical continuity between gametes was disrupted. When sperm entry was precluded by positive membrane potentials, neither conductance nor capacitance increased, indicating that sperm entry was halted before the fusion of membranes. A second, smooth increase of capacitance was associated with the exocytosis of cortical granules near the sperm in eggs that were activated. Electrical continuity between the gametes always preceded activation of the egg, but transient electrical continuity between the gametes alone was not always sufficient to induce activation.  相似文献   

4.
The wave of activation current in the Xenopus egg   总被引:8,自引:0,他引:8  
A ring-shaped wave of inward current, the activation current, propagates across the Xenopus egg from the site of activation during the positive phase of the activation or fertilization potential. This activation current wave is due to an increased chloride conductance and reflects the propagated of the ionic channels responsible for the fertilization potential. These channels are present in the animal and vegetal hemispheres; however, the magnitude of the activation current is 6-7 times greater in the animal hemisphere. Outward current of a smaller magnitude and spread out over a larger area precedes and follows the inward current except at the point of activation where the current is first inward. The inward current wave is detected in all eggs activated by sperm and in eggs activated by pricking with a sharp needle, by application of the Ca2+ ionophore, A23187, and by intracellular iontophoresis of Ca2+ or inositol 1,4,5-trisphosphate. Reduction of the inward current by TMB-8, which blocks intracellular calcium release in some cells, suggests that the activation current channels are calcium sensitive and that the current wave is concomitant with a wave of increased intracellular calcium initiated by sperm-egg interaction. The wave of cortical granule exocytosis and two or more contraction waves follow the current wave.  相似文献   

5.
To assess the role of the availability of sperm nuclear templates in the regulation of DNA synthesis, we correlated the morphological status of the fertilizing hamster sperm nucleus with its ability to synthesize DNA after in vivo and in vitro fertilization. Fertilized hamster eggs were incubated in 3H-thymidine for varying periods before autoradiography. None of the decondensed sperm nuclei nor early (Stage I) male pronuclei present after in vivo or in vitro fertilization showed incorporation of label, even in polyspermic eggs in which more advanced pronuclei were labeled. In contrast, medium-to-large pronuclei (mature Stage II pronuclei) consistently incorporated 3H-thymidine. To investigate the contribution of egg cytoplasmic factors to the regulation of DNA synthesis, we examined the timing of DNA synthesis by microinjected sperm nuclei in eggs in which sperm nuclear decondensation and male pronucleus formation were accelerated experimentally by manipulation of sperm nuclear disulfide bond content. Although sperm nuclei with few or no disulfide bonds decondense and form male pronuclei faster than nuclei rich in disulfide bonds, the onset of DNA synthesis was not advanced. We conclude the the fertilizing sperm nucleus does not become available to serve as a template for DNA synthesis until it has developed into a mature Stage II pronucleus, and that, as with decondensation and pronucleus formation, DNA synthesis also depends upon egg cytoplasmic factors.  相似文献   

6.
The sequence of ultrastructural events following the onset of the sperm-induced conductance increase in eggs of the sea urchin, Lytechinus variegatus, was investigated. Eggs voltage clamped at -20 mV were fixed 1 to 20 sec after onset of the conductance increase caused by single sperm. Continuity between the plasma membranes of the sperm and egg was first detected 5 sec after onset of the conductance increase. The earliest stages of formation of the fertilization cone coincided with the establishment of continuity of the gamete plasma membranes. At 6 to 8 sec after the initial conductance increase cortical granule dehiscence was first observed in the immediate vicinity where continuity of the gamete plasma membranes had occurred. These observations are consistent with the conclusion that opening of ion channels at fertilization precedes fusion of the sperm and egg plasma membranes, while exocytosis of cortical granules is initiated following fusion of the sperm and egg plasma membranes.  相似文献   

7.
The newt, Cynops pyrrhogaster, exhibits physiological polyspermic fertilization, in which several sperm enter an egg before egg activation. An intracellular Ca(2+) increase occurs as a Ca(2+) wave at each sperm entry site in the polyspermic egg. Some Ca(2+) waves are preceded by a transient spike-like Ca(2+) increase, probably caused by a tryptic protease in the sperm acrosome at the contact of sperm on the egg surface. The following Ca(2+) wave was induced by a sperm factor derived from sperm cytoplasm after sperm-egg membrane fusion. The Ca(2+) increase in the isolated, cell-free cytoplasm indicates that the endoplasmic reticulum is the major Ca(2+) store for the Ca(2+) wave. We previously demonstrated that citrate synthase in the sperm cytoplasm is a major sperm factor for egg activation in newt fertilization. In the present study, we found that the activation by the sperm factor as well as by fertilizing sperm was prevented by an inhibitor of citrate synthase, palmitoyl CoA, and that an injection of acetyl-CoA or oxaloacetate caused egg activation, indicating that the citrate synthase activity is necessary for egg activation at fertilization. In the frog, Xenopus laevis, which exhibits monospermic fertilization, we were unable to activate the eggs with either the homologous sperm extract or the Cynops sperm extract, indicating that Xenopus sperm lack the sperm factor for egg activation and that their eggs are insensitive to the newt sperm factor. The mechanism of egg activation in the monospermy of frog eggs is quite different from that in the physiological polyspermy of newt eggs.  相似文献   

8.
The responses of the egg to insemination in a modified Fish Ringer's solution (FRS) were examined in eggs of the zebrafish ( Brachydanio rerio ) primarily by scanning electron microscopy. FRS is a physiological saline which temporarily inhibits parthenogenetic activation of the egg for 5–8 min. Spermatozoa were collected in a small volume of water and pipetted over eggs in FRS. Eggs inseminated in FRS typically incorporated the fertilizing sperm within 3–4 min. Inseminated cells showed an absence of a fertilization cone and no cortical granule exocytosis. The deep conical depression in the egg surface beneath the micropyle remained unaltered. Control eggs inseminated in tank water developed a large fertilization cone during sperm incorporation. Occasionally, eggs inseminated in water were observed to incorporate the entire sperm head prior to egg activation. Our results corroborate earlier findings showing that in the zebrafish, cortical granule exocytosis, fertilization cone formation and elevation of the sperm entry site are not triggered by the fertilizing sperm in experimental conditions (18, 19). Furthermore, sperm incorporation requires neither egg activation nor formation of a fertilization cone in this fish.  相似文献   

9.
Sea urchin and human sperm contain receptors for neurotransmitters and psychoactive drugs, including cannabinoid receptors (CNRs). Anandamide, arachidonoylethanolamide (AEA), is a lipid-signal molecule that is an endogenous agonist for CNRs. AEA is enyzmatically released from membrane phospholipids when neurons are stimulated. Retrograde AEA signals from depolarized postsynaptic neurons inhibit neurotransmitter release at synapses in mammalian brain. Analogous processes regulate sperm functions during fertilization in sea urchins. AEA and (-)delta9tetrahydrocannabinol [(-)delta9THC], the major psychoactive constituent of marijuana, inhibit fertilization by blocking acrosomal exocytosis/acrosome reactions (AR) stimulated by egg jelly. The acrosome is a Golgi-derived secretory granule in sperm analogous to synaptic vesicles in neurons. AEA and (-)delta9THC do not block ionophore-induced AR, suggesting that they inhibit AR by modulating signal transduction event(s) before opening of ion channels. Unfertilized sea urchin eggs have enzymes required to release AEA from membrane phospholipids. These results indicate that sea urchin eggs may release AEA after activation by the fertilizing sperm. Released AEA may then react with CNRs in nearby sperm to block AR, thereby helping to prevent polyspermy. AEA is present in human seminal plasma, midcycle oviductal fluid, and follicular fluid. Sperm are sequentially exposed to these fluids as they move from the vagina to the site of fertilization in the oviduct. R-methanandamide (AM-356), a metabolically stable AEA analog, and (-)delta9THC modulate capacitation and fertilizing potential of human sperm in vitro. These findings suggest that AEA signaling directly affects sperm functions required for fertilization and provide additional evidence for common signaling processes in neurons and sperm.  相似文献   

10.
Microelectrode and tracer flux studies of the Urechis egg during fertilization have shown: (a) insemination causes a fertilization potential; the membrane potential rises from an initial level of -33 +/- 6 mV to a peak at +51 +/- 6 mV (n = 16), falls to a plateau of about +30 mV, then returns to the original resting potential 9 +/- 1 min (n - 10) later; (b) the fertilization potential results from an increase in Na+ permeability, which is amplified during the first 15 s by a Ca++ action potential; (c) the maximum amplitude of the fertilization potential, excluding the first 15 s, changes by 51 mV for a 10-fold change in external [Na+]; (d) in the 10 min period after insemination, both Na+ and Ca++ influxes increase relative to unfertilized egg values by factors of 17 +/- 7 (n = 6) and 34 +/- 14 (n = 4), respectively; the absolute magnitude of the Na+ influx is 16 +/- 6 times larger than that of Ca++; (e) in the absence of sperm these same electrical and ionic events are elicited by trypsin; thus, the ion channels responsible must preexist in the unfertilized egg membrane; (f) increased Na+ influx under conditions of experimentally induced polyspermy indicates that during normal monospermic fertilization, only a fraction of available Na+ channels are opened; we conclude that these channels are sperm-gated; (g) Ca++ influx at fertilization is primarily via the membrane potential-gated channel, because kinetics are appropriate, and influx depends on potential in solutions of varying [Na+], but is independent of number of sperm incorporations in normal sea water.  相似文献   

11.
Ovulated, unfertilized eggs of sea lamprey Petromyzon marinus could be stored for 1 day at 15° C without significant loss of fertilizing ability. After 2 days storage most eggs could still be fertilized. Lamprey semen could be stored up to 1 day. Thereafter, a decrease in sperm fertilizing ability occurred, accompanied with a decrease in sperm motility. Unlike teleost fish, sea lamprey eggs could still be fertilized after 1 h contact with water. This extended time of gamete fertility after release into water may help to account for the reproductive success of this species. Maximal fertilization rates were obtained at a sperm: egg ratio of 50 000, a ratio recommended for studies on fertility of individual males. Assessing fertilization success 3 min after fertilization (at cytoplasmic bleb stage) or 5 h after fertilization (at two–cell embryo) was strongly correlated ( r =0·92 and 0·98) with estimation and fertilization success at hatching. These results offer improvement in artificial fertilization techniques under laboratory conditions and provide new information on the biology of fertilization in sea lamprey.  相似文献   

12.
The sperm entry site (SES) of zebrafish (Brachydanio rerio) eggs was studied before and during fertilization by fluorescence, scanning, and transmission electron microscopy. Rhodamine phalloidin (RhPh), used to detect polymerized filamentous actin, was localized to microvilli of the SES and to cytoplasm subjacent to the plasma membrane in the unfertilized egg. The distribution of RhPh staining at the SES correlated with the ultrastructural localization of a submembranous electrondense layer of cortical cytoplasm approximately 500 nm thick and containing 5- to 6-nm filaments. Actin, therefore, was organized at the SES as a tightly knit meshwork of filaments prior to fertilization. Contact between the fertilizing sperm and the filamentous actin network was observed by 15-20 sec postinsemination or just before the onset of fertilization cone formation. Growing fertilization cones of either artificially activated or inseminated eggs exhibited intense RhPh staining and substantial increase in thickness of the actin meshwork. Collectively, TEM and RhPh fluorescence images of inseminated eggs demonstrated that the submembranous actin became rearranged in fertilization cones to form a thickened meshwork around the sperm nucleus during incorporation. The results reported here suggest that activation of the egg triggers a dramatic polymerization of actin beneath the plasma membrane of the fertilization cone. Furthermore, the actin involved in sperm incorporation is sensitive to the action of cytochalasins.  相似文献   

13.
The electrical response of mature anuran eggs to the fertilizing sperm consists of a rapid depolarization and a decrease in resistance of the plasma membrane (fertilization potential) and serves as a fast block to polyspermy. We report here that the fertilization potential, previously thought to be the earliest electrical response of the egg, is preceded in Rana temporaria by changes in voltage noise. Voltage noise was recorded after insemination and compared in monospermic and NaI-induced polyspermic eggs. Fertilization potential in monospermic eggs arised at 1 min 45 sec to 2 min 15 sec after insemination, and that in NaI-induced polyspermic eggs did at 3 min to 3 min 30 sec after insemination. However, the increase in voltage noise was detected at the similar time (1–2 min 30 sec) after insemination in both the eggs. The duration of voltage noise increase before the fertilization potential was larger in polyspermic eggs (50–105 sec) than in monospermic eggs (10–40 sec). Polyspermic fertilization in Rana temporaria induced by NaI was checked by visualizing multiple sperm entry sites with the scanning microscope. The process of sperm entry and the development of the fertilization body are similar to those occurring with monospermic fertilization; furthermore all supernumerary sperm fuse only with the animal hemisphere of the egg. Although the physiological basis of the changes in voltage noise is unclear, these alterations appear to be the earliest electrical response to sperm yet reported.  相似文献   

14.
Ultrastructure of sperm and eggs of the ocean pout (Macrozoarces americanus L.), an internally fertilizing marine teleost, was examined by scanning and transmission electron microscopy. The results showed that the sperm do not have an acrosome but have a very long mid-piece (one to two times the sperm head length) containing numerous well-developed elongated mitochondria. The sperm also have two tails (is biflagellate) each consisting of nine peripheral and one central pair (9 ± 2) of microtubules. This long mid-piece and the biflagellate nature of the sperm appear to be associated with the long life-span of the sperm and with sperm dispersal in the ovary to fertilize the eggs internally. The ocean pout eggs are enveloped by a porous chorionic membrane similar to that found in other teleosts but have two micropyles, a condition likely related to a mechanism of egg fertilization which increases the egg fertlity in the presence of low sperm numbers. Following insemination, some biochemically undefined excretions appeared on the surface of fertilized eggs and led to the acquisition of adherent capability of the eggs which formed a tightly associated egg mass in sea water. © 1995 wiley-Liss, Inc.  相似文献   

15.
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan''s theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.  相似文献   

16.
The newt, Cynops pyrrhogaster, exhibits physiological polyspermic fertilization, in which several sperm enter an egg before egg activation. An intracellular Ca2+ increase occurs as a Ca2+ wave at each sperm entry site in the polyspermic egg. Some Ca2+ waves are preceded by a transient spike-like Ca2+ increase, probably caused by a tryptic protease in the sperm acrosome at the contact of sperm on the egg surface. The following Ca2+ wave was induced by a sperm factor derived from sperm cytoplasm after sperm–egg membrane fusion. The Ca2+ increase in the isolated, cell-free cytoplasm indicates that the endoplasmic reticulum is the major Ca2+ store for the Ca2+ wave. We previously demonstrated that citrate synthase in the sperm cytoplasm is a major sperm factor for egg activation in newt fertilization. In the present study, we found that the activation by the sperm factor as well as by fertilizing sperm was prevented by an inhibitor of citrate synthase, palmitoyl CoA, and that an injection of acetyl-CoA or oxaloacetate caused egg activation, indicating that the citrate synthase activity is necessary for egg activation at fertilization. In the frog, Xenopus laevis, which exhibits monospermic fertilization, we were unable to activate the eggs with either the homologous sperm extract or the Cynops sperm extract, indicating that Xenopus sperm lack the sperm factor for egg activation and that their eggs are insensitive to the newt sperm factor. The mechanism of egg activation in the monospermy of frog eggs is quite different from that in the physiological polyspermy of newt eggs.  相似文献   

17.
Although activation of a sea urchin egg by sperm leads to three phases of membrane conductance increase in the egg, the mechanism by which the sperm causes these conductance changes is not known. We used the loose patch clamp technique to localize the conductance changes in voltage clamped eggs. A patch of the egg's membrane was isolated from the bath by pressing the loose patch clamp pipette against the egg surface. Sperm added to the bath attached to the surface of the egg in a region other than at the isolated membrane patch. During phase 1 of the activation current, no changes of the membrane conductance were detected. At the time of, and subsequent to the onset of phase 2, large currents recorded between the interior of the patch pipette and the bath were attributed to changes of the seal resistance between the surface of the egg and the pipette. A local change of membrane conductance was observed during phase 2 despite the changes of seal resistance. During phase 2, the large amplitude and short duration of the local membrane conductance increase relative to the membrane, conductance increase for the whole egg during phase 2 indicated that the conductance increase occurred over the entire surface of the egg, but not simultaneously. The time when the peak conductance for the membrane patch occurred, relative to the time of onset for phase 2 in the whole egg, depended on the distance, measured in a straight line, between the site of sperm attachment and the tip of the pipette. These data indicate that the localized conductance increase progressed over the surface of the egg from the site of sperm attachment to the opposite pole of the egg. It is proposed that the local conductance increase, the cortical reaction, and the change of seal resistance are all evoked by a common cytoplasmic message that progresses throughout the cytoplasm of the egg from the site of sperm attachment to the opposite pole of the egg.  相似文献   

18.
In most bird species, pairs copulate many times before egg laying. The exact function of repeated inseminations (i.e. successful copulations) is unknown, but several suggestions have been made. We tested the hypothesis that repeated inseminations are required to ensure fertilization of eggs, by using an experimental method where free-ranging male collared flycatchers (Ficedula albicollis) were prevented from inseminating their mates. We show that egg fertility was lower when females had not copulated during the studied part of their fertile period. By counting sperm on the inner perivitelline layer of eggs, we estimated that a minimum of 86 sperm must reach the site of fertilization to ensure average fertility. Using the timing of inseminations and the numbers of sperm on successive eggs, we show that repeated copulations are necessary to achieve an average rate of fertilization of a single clutch. Our results thus provide evidence that repeated inseminations function to ensure fertilization success. We discuss possible constraints on sperm production and utilization that may have contributed to this pattern.  相似文献   

19.
During spawning, eggs of most fish species entering the aquatic environment remain fertilizable for a relatively short period of time. This is due to the “spontaneous egg activation” giving rise to the fertilization membrane, which prevents the penetration of excessive and foreign sperm into the egg during normal fertilization. This work demonstrates that the fertilization membrane formation and the loss of fertilizability in aqueous solutions of different composition are inhibited by protease inhibitors, in particular, leupeptin and aprotinin. The presence of natural protease inhibitors in the ovarian fluid that prevent spontaneous egg activation is proposed. The decrease in the concentration of these inhibitors as the ovarian fluid is diluted in aquatic medium during spawning can explain egg activation in the absence of sperm.  相似文献   

20.
Cinemicrography of sea urchin fertilization reveals that the fertilizing sperm is one of the first sperm to attach to the egg. Just before the cortical reaction the fertilizing sperm ceases motility and then is incorporated into the egg without flagellar beating. The rate of incorporation is 5–11 μm/sec and is constant. Lytechinus pictus sperm rendered immotile by azide treatment can bind to and fertilize eggs but binding, and therefore fertilization, is blocked by azide treatment of Strongylocentrotus purpuratus gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号