首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete nucleotide sequences of two alleles of cellobiose dehydrogenase, cdh-1 (3,627 bp) and cdh-2 (3,623 bp), from Phanerochaete chrysosporium OGC101 are reported. The nucleotide sequences of cdh-1 and cdh-2 exhibit 97% similarity. A total of eighty-six point mutations between cdh-1 and cdh-2 are observed. Both alleles have 14 exons, and the introns are located at exactly the same positions. The translation products of these alleles have identical amino acid sequences. Restriction fragment length polymorphism analyses of homokaryotic derivatives show segregation of the CDH alleles.  相似文献   

2.
The importance of extracellular H2O2 in lignin degradation has become increasingly apparent with the recent discovery of H2O2-requiring ligninases produced by white-rot fungi. Here we describe a new H2O2-producing activity of Phanerochaete chrysosporium that involves extracellular oxidases able to use simple aldehyde, alpha-hydroxycarbonyl, or alpha-dicarbonyl compounds as substrates. The activity is expressed during secondary metabolism, when the ligninases are also expressed. Analytical isoelectric focusing of the extracellular proteins, followed by activity staining, indicated that minor proteins with broad substrate specificities are responsible for the oxidase activity. Two of the oxidase substrates, glyoxal and methylglyoxal, were also identified, as their quinoxaline derivatives, in the culture fluid as secondary metabolites. The significance of these findings is discussed with respect to lignin degradation and other proposed systems for H2O2 production in P. chrysosporium.  相似文献   

3.
Glyoxal oxidase of P. chrysosporium is a radical copper oxidase that catalyzes oxidation of aldehydes to carboxylic acids coupled to dioxygen reduction to H(2)O(2). In addition to known substrates, glycerol is also found to be a substrate for glyoxal oxidase. During enzyme turnover, glyoxal oxidase undergoes a reversible inactivation, probably caused by loss of the active site free radical, resulting in short-lasting enzyme activities and undetectable substrate conversions. Enzyme activity could be extended by including two additional enzymes, horseradish peroxidase and catalase, in addition to a redox chemical activator, such as Mn(III) (or Mn(II)+H(2)O(2)) or hexachloroiridate. Using this three-enzyme system glycerol was converted in glyceric acid in a two-step reaction, with glyceraldehyde as intermediate. A possible operation mechanism is proposed in which the three enzymes would work coordinately allowing to maintain a sustained glyoxal oxidase activity. In the course of its catalytic cycle, glyoxal oxidase alternates between two functional and interconvertible reduced and oxidized forms resulting from a two-electron transfer process. However, glyoxal oxidase can also undergo an one-electron reduction to a catalytically inactive form lacking the active site free radical. Horseradish peroxidase could use glyoxal oxidase-generated H(2)O(2) to oxidize Mn(II) to Mn(III) which, in turn, would reoxidize and reactivate the inactive form of glyoxal oxidase. Catalase would remove the excess of H(2)O(2) generated during the reaction. In spite of the improvement achieved using the three-enzyme system, glyoxal oxidase inactivation still occurred, which resulted in low substrate conversions. Possible causes of inactivation, including end-product inhibition, are discussed.  相似文献   

4.
5.
Both genomic and full length cDNA clones of an Arabidopsis thaliana sugar carrier, STP1, have been obtained using a cDNA clone of the H+/hexose cotransporter from the green alga Chlorella kessleri as hybridization probe. The peptide predicted from these sequences in 522 amino acids long and has a molecular weight of 57,518 kd. This higher plant sugar carrier contains 12 putative transmembrane segments and is highly homologous to the H+/hexose cotransporter from Chlorella, with an overall identity in the amino acid sequence of 47.1%. It is also homologous to the human HepG2 glucose transporter (28.4%), and other sugar carriers from man, rat, yeast and Escherichia coli. The definite proof for the function of the STP1 protein as a hexose transporter and data on its substrate specificity were obtained by heterologous expression in the fission yeast Schizosaccharomyces pombe. Transformed yeast cells transport D-glucose with a 100-fold lower KM value than control cells. Moreover only the transformed cells were able to accumulate the non-metabolizable D-glucose analogue 3-O-methyl-D-glucose, indicating that the Arabidopsis carrier catalyses an energy dependent, active uptake of hexoses. Expression of STP1 mRNA is low in heterotrophic tissues like roots or flowers. High levels of expression are found in leaves.  相似文献   

6.
7.
8.
The reduction of dioxygen by cellobiose oxidase leads to accumulation of H2O2, with either cellobiose or microcrystalline cellulose as electron donor. Cellobiose oxidase will also reduce many Fe(III) complexes, including Fe(III) acetate. Many Fe(II) complexes react with H2O2 to produce hydroxyl radicals or a similarly reactive species in the Fenton reaction as shown: H2O2 + Fe2+----HO. + HO- + Fe3+. The hydroxylation of salicylic acid to 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid is a standard test for hydroxyl radicals. Hydroxylation was observed in acetate buffer (pH 4.0), both with Fe(II) plus H2O2 and with cellobiose oxidase plus cellobiose, O2 and Fe(III). The hydroxylation was suppressed by addition of catalase or the absence of iron [Fe(II) or Fe(III) as appropriate]. Another test for hydroxyl radicals is the conversion of deoxyribose to malondialdehyde; this gave positive results under similar conditions. Further experiments used an O2 electrode. Addition of H2O2 to Fe(II) acetate (pH 4.0) or Fe(II) phosphate (pH 2.8) in the absence of enzyme led to a pulse of O2 uptake, as expected from production of hydroxyl radicals as shown: RH+HO.----R. + H2O; R. + O2----RO2.----products. With phosphate (pH 2.8) or 10 mM acetate (pH 4.0), the O2 uptake pulse was increased by Avicel, suggesting that the Avicel was being damaged. Oxygen uptake was monitored for mixtures of Avicel (5 g.1-1), cellobiose oxidase, O2 and Fe(III) (30 microM). An addition of catalase after 20-30 min indicated very little accumulation of H2O2, but caused a 70% inhibition of the O2 uptake rate. This was observed with either phosphate (pH 2.8) or 10 mM acetate (pH 4.0) as buffer, and is further evidence that oxidative damage had been taking place, until the Fenton reaction was suppressed by catalase. A separate binding study established that with 10 mM acetate as buffer, almost all (98%) of the Fe(III) would have been bound to the Avicel. In the presence of Fe(III), cellobiose oxidase could provide a biological method for disrupting the crystalline structure of cellulose.  相似文献   

9.
10.
Glucose oxidase, an important source of hydrogen peroxide in lignin-degrading cultures of Phanerochaete chrysosporium, was purified to electrophoretic homogeneity by a combination of ion-exchange and molecular sieve chromatography. The enzyme is a flavoprotein with an apparent native molecular weight of 180,000 and a denatured molecular weight of 80,000. This enzyme does not appear to be a glycoprotein. It gives optimal activity with D-glucose, which is stoichiometrically oxidized to D-gluconate. The enzyme has a relatively broad pH optimum of 4 to 5. It is inhibited by Ag+ (10 mM) and o-phthalate (100 mM), but not by Cu2+, NaF, or KCN (each 10 mM).  相似文献   

11.
Immobilization of pyranose oxidase (E.C.1.1.3.10) from Phanerochaete chrysosporium is described. The enzyme was bound to a glass-beaded support according to the glutardialdehyde, diazo, and carbodiimide methods with activity yields of 10%-23.3%. Characterization of the enzyme immobilized with the glutardialdehyde showed enhanced operational, storage, and temperature stability. The temperature optimum remained unchanged, but the pH optimum was slightly altered. Kinetic properties and the relative substrate specificities for glucose and xylose showed certain differences.  相似文献   

12.
Glyoxal oxidase (GLOX) is a source of the extracellular H2O2 required for the oxidation reactions catalyzed by the ligninolytic peroxidases. In the present study, the GLOX-encoding gene (glx) of Phanerochaete chrysosporium was cloned, and bee2 promoter of P. sordida YK-624 was used to drive the expression of glx. The expression plasmid was transformed into a P. sordida YK-624 uracil auxotrophic mutant (strain UV-64), and 16 clones were obtained as GLOX-introducing transformants. These transformants showed higher GLOX activities than wild-type P. sordida YK-624 and control transformants harboring marker plasmid. RT-PCR analysis indicated that the increased GLOX activity was associated with elevated recombinant glx expression. Moreover, these transformants showed higher ligninolytic activity than control transformants. These results suggest that the ligninolytic properties of white-rot fungi can be improved by recombinant expression of glx.  相似文献   

13.
Cellobiose:quinone oxidoreductase (CBQase) in the presence of cellobiose inhibits peroxidase-catalyzed oxidation of iodide to triiodide (I3). This inhibition is due to the two-electron reduction of I3- by CBQase. The apparent Km of I3- for this reaction is 120 microM and the specific activity is 57 mumol.min-1.mg-1. A proposed mechanism for I3- reduction by CBQase involves initial reduction of the flavin moiety by cellobiose to produce a dihydroflavin. This is followed by the substitution of one of the iodine atoms of I3- at the C(4a)-position of dihydroflavin to generate C(4a)-iododihydroflavin and two iodide ions. The C(4a)-iododihydroflavin eliminates HI to regenerate the oxidized CBQase.  相似文献   

14.
Hydroxylamine oxidation was measured in four recently isolated heterotrophic nitrate-reducing bacteria belonging to the generaPseudomonas, Moraxella, Arthrobacter andAeromonas. A hydroxylamine-cytochromec oxidoreductase activity was detected in periplasmic fractions of thePseudomonas andAeromonas spp. and in total soluble fractions of theArthrobacter sp. A monomeric 19-kDa non-haem iron hydroxylamine-cytochromec oxidoreductase was purified from thePseudomonas species and shown to be similar to hydroxylaminecytochromec oxidoreductase ofParacoccus denitrificans.Abbreviations AMO Ammonia monoxygenase - HAO Hydroxylamine-cytochromec oxidoreductase  相似文献   

15.
We report here the identification of novel human PDE1A splice variants, their tissue distribution patterns, genomic structure, and chromosomal localization of the gene. We identified one N-terminus (N3) and one C-terminus (C3) by cDNA library screening and dbEST database search. These N- and C-termini, including the reported N-termini (N1 and N2) and C-termini (C1 and C2), combined to generate nine different PDE1A cDNAs. N1 and N2 are similar to the 5' ends of the bovine PDE1A proteins of 61 kDa and 59 kDa, respectively, and C1 and C2 are the 3' ends of the reported human PDE1A variants. The results of PCR and Southern blot analysis show that nine PDE1A splice variants exhibit distinctive tissue distribution patterns by the difference of the N-terminus. PDE1As with N2 were widely expressed in various tissues, mainly in the kidney, liver, and pancreas. On the other hand, PDE1As with N1 and N3 were particularly expressed at a high level in the brain and testis, respectively. These findings suggest that the distinct expression patterns among PDE1A variants depend on the several promoters situated upstream of exons encoding 5' ends of the variants. The PDE1A gene spans over 120 kb of genomic DNA, and consists of at least 17 exons and 16 introns. The PDE1A gene was located on human chromosome 2q32 by fluorescent in situ hybridization analysis.  相似文献   

16.
C Cripps  J A Bumpus    S D Aust 《Applied microbiology》1990,56(4):1114-1118
Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cultures. Incubation with crude lignin peroxidase resulted in decolorization of Azure B, Orange II, and Tropaeolin O but not Congo Red, indicating that lignin peroxidase is not required in the initial step of Congo Red degradation.  相似文献   

17.
Anion exchangers are membrane proteins that have been identified in a wide variety of species, where they transport Cl(-) and HCO3(-)across the cell membrane. In this study, we cloned an anion-exchange protein from the genome of the basidiomycete Phanerochaete chrysosporium (PcAEP). PcAEP is a 618-amino acid protein that is homologous to the human anion exchanger (AE1) with 22.9% identity and 40.3% similarity. PcAEP was overexpressed by introducing the PcAEP gene into the genome of Pichia pastoris. As a result, PcAEP localized in the membrane of P. pastoris and was solubilized successfully by n-dodecyl-β-D-maltoside. His-tagged PcAEP was purified as a single band on SDS-PAGE using immobilized metal affinity chromatography and gel filtration chromatography. Purified PcAEP was found to bind to SITS, an inhibitor of the AE family, suggesting that the purified protein is folded properly. PcAEP expressed and purified using the present system could be useful for biological and structural studies of the anion exchange family of proteins.  相似文献   

18.
Several catalytic properties of the FAD enzyme cellobiose:quinone oxidoreductase (CBQ) and the heme/FAD enzyme, cellobiose oxidase (CBO) have been investigated and compared. Dichlorophenol-indophenol was found to be a very good electron acceptor for cellobiose oxidation by both enzymes. The optimal pH value for this oxidation with dichlorophenol-indophenol as a co-substrate was observed around pH 4 for both enzymes. The turnover numbers of this reaction were also very similar. The Km values for cellobiose oxidation were identical, whereas the Km for CBO with dichlorophenol-indophenol is lower than that of CBQ. Atmospheric oxygen is a very poor electron acceptor for both CBO and CBQ, however, CBO can utilize cytochrome c as an effective electron acceptor, while CBQ cannot. The specific activity of CBO for cytochrome c is thus about 200-times higher than for oxygen. Thus, one way to distinguish the two enzymes is by the cytochrome-c-reducing ability of CBO. Therefore, we propose that the nomenclature for CBO is tentatively changed to cellobiose:cytochrome c oxidoreductase until a rational name can be installed. Both enzymes have radical-reducing activities. The cation radical, derived from 1,2,4,5-tetramethoxybenzene, was reduced by both enzymes at almost the same reaction rate. The phenoxyradical produced by lignin peroxidase, catalyzing the oxidation of acetosyringon, was also reduced by both enzymes. The reduction of phenoxyradicals formed by phenoloxidases (lignin peroxidases, as well as laccases) may be important in preventing repolymerization reactions which we suggest would significantly facilitate lignin degradation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号