首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Receptors for purines and pyrimidines are expressed throughout the cardiovascular system. This study investigated their functional expression in porcine isolated pancreatic arteries. Pancreatic arteries (endothelium intact or denuded) were prepared for isometric tension recording and preconstricted with U46619, a thromboxane A2 mimetic; adenosine-5′-diphosphate (ADP), uridine-5′-triphosphate (UTP) and MRS2768, a selective P2Y2 agonist, were applied cumulatively, while adenosine-5′-triphosphate (ATP) and αβ-methylene-ATP (αβ-meATP) response curves were generated from single concentrations per tissue segment. Antagonists/enzyme inhibitors were applied prior to U46619 addition. ATP, αβ-meATP, UTP and MRS2768 induced vasoconstriction, with a potency order of αβ-meATP > MRS2768 > ATP ≥ UTP. Contractions to ATP and αβ-meATP were blocked by NF449, a selective P2X1 receptor antagonist. The contraction induced by ATP, but not UTP, was followed by vasorelaxation. Endothelium removal and DUP 697, a cyclooxygenase-2 inhibitor, had no significant effect on contraction to ATP but attenuated that to UTP, indicating actions at distinct receptors. MRS2578, a selective P2Y6 receptor antagonist, had no effect on contractions to UTP. ADP induced endothelium-dependent vasorelaxation which was inhibited by MRS2179, a selective P2Y1 receptor antagonist, or SCH58261, a selective adenosine A2A receptor antagonist. The contractions to ATP and αβ-meATP were attributed to actions at P2X1 receptors on the vascular smooth muscle, whereas it was shown for the first time that UTP induced an endothelium-dependent vasoconstriction which may involve P2Y2 and/or P2Y4 receptors. The relaxation induced by ADP is mediated by P2Y1 and A2A adenosine receptors. Porcine pancreatic arteries appear to lack vasorelaxant P2Y2 and P2Y4 receptors.  相似文献   

2.
Adenosine triphosphate (ATP) is coreleased with catecholamines from adrenal medullary chromaffin cells in response to sympathetic nervous system stimulation and may regulate these cells in an autocrine or paracrine manner. Increases in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation were observed in response to ATP stimulation of bovine chromaffin cells. The signaling pathway involved in ATP-mediated ERK1/2 phosphorylation was investigated via Western blot analysis. ATP and uridine 5′-triphosphate (UTP) increased ERK1/2 phosphorylation potently, peaking between 5 and 15 min. The mitogen-activated protein kinase (MAPK/ERK)-activating kinase (MEK) inhibitor PD98059 blocked this response. UTP, which is selective for G-protein-coupled P2Y receptors, was the most potent agonist among several nucleotides tested. Adenosine 5′-O-(3-thio) triphosphate (ATPγS) and ATP were also potent agonists, characteristic of the P2Y2 or P2Y4 receptor subtypes, whereas agonists selective for P2X receptors or other P2Y receptor subtypes were weakly effective. The receptor involved was further characterized by the nonspecific P2 antagonists suramin and reactive blue 2, which each partially inhibited ATP-mediated ERK1/2 phosphorylation. Inhibitors of protein kinase C (PKC), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphoinositide-3 kinase (PI3K) had no effect on ATP-mediated ERK1/2 phosphorylation. The Src inhibitor PP2, epidermal growth factor receptor (EGFR) inhibitor AG1478, and metalloproteinase inhibitor GM6001 decreased ATP-mediated ERK1/2 phosphorylation. These results suggest nucleotide-mediated ERK1/2 phosphorylation is mediated by a P2Y2 or P2Y4 receptor, which stimulates metalloproteinase-dependent transactivation of the EGFR.  相似文献   

3.
This work shows that ATP activates JNK1, but not JNK2, in rat osteoblasts and ROS-A 17/2.8 osteoblast-like cells. In ROS-A 17/2.8 cells ATP induced JNK1 phosphorylation in a dose- and time-dependent manner. JNK1 phosphorylation also increased after osteoblast stimulation with ATPγS and UTP, but not with ADPβS. RT-PCR studies supported the expression of P2Y2 receptor subtype. ATP-induced JNK1 activation was reduced by PI-PLC, IP3 receptor, PKC and Src inhibitors and by gadolinium, nifedipine and verapamil or a Ca2+-free medium. ERK 1/2 or p38 MAPK inhibitors diminished JNK1 activation by ATP, suggesting a cross-talk between these pathways. ATP stimulated osteoblast-like cell proliferation consistent with the participation of P2Y2 receptors. These results show that P2Y2 receptor stimulation by ATP induces JNK1 phosphorylation in ROS-A 17/2.8 cells in a way dependent on PI-PLC/IP3/intracellular Ca2+ release and Ca2+ influx through stress activated and L-type voltage-dependent calcium channels and involves PKC and Src kinases.  相似文献   

4.
Biased agonism describes a multistate model of G protein-coupled receptor activation in which each ligand induces a unique structural conformation of the receptor, such that the receptor couples differentially to G proteins and other intracellular proteins. P2Y receptors are G protein-coupled receptors that are activated by endogenous nucleotides, such as adenosine 5′-triphosphate (ATP) and uridine 5′-triphosphate (UTP). A previous report suggested that UTP may be a biased agonist at the human P2Y11 receptor, as it increased cytosolic [Ca2+], but did not induce accumulation of inositol phosphates, whereas ATP did both. The mechanism of action of UTP was unclear, so the aim of this study was to characterise the interaction of UTP with the P2Y11 receptor in greater detail. Intracellular Ca2+ was monitored in 1321N1 cells stably expressing human P2Y11 receptors using the Ca2+-sensitive fluorescent indicator, fluo-4. ATP evoked a rapid, concentration-dependent rise in intracellular Ca2+, but surprisingly, even high concentrations of UTP were ineffective. In contrast, UTP was slightly, but significantly more potent than ATP in evoking a rise in intracellular Ca2+ in 1321N1 cells stably expressing the human P2Y2 receptor, with no difference in the maximum response. Thus, the lack of response to UTP at hP2Y11 receptors was not due to a problem with the UTP solution. Furthermore, coapplying a high concentration of UTP with ATP did not inhibit the response to ATP. Thus, contrary to a previous report, we find no evidence for an agonist action of UTP at the human P2Y11 receptor, nor does UTP act as an antagonist.  相似文献   

5.
Extracellular nucleotides acting via P2 receptors play important roles in cardiovascular physiology/pathophysiology. Pyrimidine nucleotides activate four G protein-coupled P2Y receptors (P2YRs): P2Y2 and P2Y4 (UTP-activated), P2Y6, and P2Y14. Previously, we showed that uridine 5′-triphosphate (UTP) activating P2Y2R reduced infarct size and improved mouse heart function after myocardial infarct (MI). Here, we examined the cardioprotective role of P2Y2R in vitro and in vivo following MI using uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt (MRS2768), a selective and more stable P2Y2R agonist. Cultured rat cardiomyocytes pretreated with MRS2768 displayed protection from hypoxia [as revealed by lactate dehydrogenase (LDH) release and propidium iodide (PI) binding], which was reduced by P2Y2R antagonist, AR-C118925 (5-((5-(2,8-dimethyl-5H-dibenzo[a,d][7]annulen-5-yl)-2-oxo-4-thioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-N-(1H-tetrazol-5-yl)furan-2-carboxamide). In vivo, echocardiography and infarct size staining of triphenyltetrazolium chloride (TTC) in 3 groups of mice 24 h post-MI: sham, MI, and MI+MRS2768 indicated protection. Fractional shortening (FS) was higher in MRS2768-treated mice than in MI alone (40.0 ± 3.1 % vs. 33.4 ± 2.7 %, p < 0.001). Troponin T and tumor necrosis factor-α (TNF-α) measurements demonstrated that MRS2768 pretreatment reduced myocardial damage (p < 0.05) and c-Jun phosphorylation increased. Thus, P2Y2R activation protects cardiomyocytes from hypoxia in vitro and reduces post-ischemic myocardial damage in vivo.  相似文献   

6.
Pancreatic cells express several P2 receptors including P2Y1 and the modulation of insulin secretion by extracellular nucleotides has suggested that these receptors may contribute to the regulation of glucose homeostasis. To determine whether the P2Y1 receptor is involved in this process, we performed studies in P2Y1–/– mice. In baseline conditions, P2Y1–/– mice exhibited a 15% increase in glycemia and a 40% increase in insulinemia, associated with a 10% increase in body weight, pointing to a role of the P2Y1 receptor in the control of glucose metabolism. Dynamic experiments further showed that P2Y1–/– mice exhibited a tendency to glucose intolerance. These features were associated with a decrease in the plasma levels of free fatty acid and triglycerides. When fed a lipids and sucrose enriched diet for 15 weeks, the two genotypes no longer displayed any significant differences. To determine whether the P2Y1 receptor was directly involved in the control of insulin secretion, experiments were carried out in isolated Langerhans islets. In the presence of high concentrations of glucose, insulin secretion was significantly greater in islets from P2Y1–/– mice. Altogether, these results show that the P2Y1 receptor plays a physiological role in the maintenance of glucose homeostasis at least in part by regulating insulin secretion.  相似文献   

7.
Li L  Jia ZH  Chen C  Wei C  Han JK  Wu YL  Ren LM 《Purinergic signalling》2011,7(2):221-229
P2X1 receptors, the major subtype of P2X receptors in the vascular smooth muscle, are essential for α,β-methylene adenosine 5′-triphosphate (α,β-MeATP)-induced vasoconstriction. However, relative physiological significance of P2X1 receptor-regulated vasoconstriction in the different types of arteries in the rat is not clear as compared with α1-adrenoceptor-regulated vasoconstriction. In the present study, we found that vasoconstrictive responses to noncumulative administration of α,β-MeATP in the rat isolated mesenteric arteries were significantly smaller than those to single concentration administration of α,β-MeATP. Therefore, we firstly reported the characteristic of α,β-MeATP-regulated vasoconstrictions in rat tail, internal carotid, pulmonary, mesenteric arteries, and aorta using single concentration administration of α,β-MeATP. The rank order of maximal vasoconstrictions for α,β-MeATP (E max·α,β-MeATP) was the same as that of maximal vasoconstrictions for noradrenaline (E max·NA) in the internal carotid, pulmonary, mesenteric arteries, and aorta. Moreover, the value of (E max·α,β-MeATP/E max·KCl)/(E max·NA/E max·KCl) was 0.4 in each of the four arteries, but it was 0.8 in the tail artery. In conclusion, P2X1 receptor-mediated vasoconstrictions are equally important in rat internal carotid, pulmonary, mesenteric arteries, and aorta, but much greater in the tail artery, suggesting its special role in physiological function.  相似文献   

8.
Aging causes loss of brain synapses and memory, and microglial phagocytosis of synapses may contribute to this loss. Stressed neurons can release the nucleotide UTP, which is rapidly converted into UDP, that in turn activates the P2Y6 receptor (P2Y6R) on the surface of microglia, inducing microglial phagocytosis of neurons. However, whether the activation of P2Y6R affects microglial phagocytosis of synapses is unknown. We show here that inactivation of P2Y6R decreases microglial phagocytosis of isolated synapses (synaptosomes) and synaptic loss in neuronal–glial co‐cultures. In vivo, wild‐type mice aged from 4 to 17 months exhibited reduced synaptic density in cortical and hippocampal regions, which correlated with increased internalization of synaptic material within microglia. However, this aging‐induced synaptic loss and internalization were absent in P2Y6R knockout mice, and these mice also lacked any aging‐induced memory loss. Thus, P2Y6R appears to mediate aging‐induced loss of synapses and memory by increasing microglial phagocytosis of synapses. Consequently, blocking P2Y6R has the potential to prevent age‐associated memory impairment.  相似文献   

9.
Microglia are major immunocompetent cells in the central nervous system and retain highly dynamic motility. The processes which allow these cells to move, such as chemotaxis and phagocytosis, are considered part of their functions and are closely related to purinergic signaling. Previously, we reported that the activation of the P2Y6 receptor by UDP stimulation in microglia evoked dynamic cell motility which enhanced their phagocytic capacity, as reported by Koizumi et al. (Nature 446(7139):1091–1095, 2007). These responses require actin cytoskeletal rearrangement, which is seen after UDP stimulation. However, the intracellular signaling pathway has not been defined. In this study, we found that UDP in rat primary microglia rapidly induced the transient phosphorylation at Ser157 of vasodilator-stimulated phosphoprotein (VASP). VASP, one of actin binding protein, accumulated at the plasma membrane where filamentous (F)-actin aggregated in a time-dependent manner. The phosphorylation of VASP was suppressed by inhibition of PKC. UDP-induced local actin aggregations were also abrogated by PKC inhibitors. The Rho inhibitor CT04 and the expression of p115-RGS, which suppresses G12/13 signaling, attenuated UDP-induced phosphorylation of VASP and actin aggregation. These results indicate that PKC- and Rho-dependent phosphorylation of VASP is involved in UDP-induced actin aggregation of microglia.  相似文献   

10.
The P2Y2 receptor is a G-protein-coupled receptor with adenosine 5′-triphosphate (and UTP) as natural ligands. It is thought to be involved in bone physiology in an anti-osteogenic manner. As several non-synonymous single nucleotide polymorphisms (SNPs) have been identified within the P2Y2 receptor gene in humans, we examined associations between genetic variations in the P2Y2 receptor gene and bone mineral density (BMD) (i.e., osteoporosis risk), in a cohort of fracture patients. Six hundred and ninety women and 231 men aged ≥50 years, visiting an osteoporosis outpatient clinic at Maastricht University Medical Centre for standard medical follow-up after a recent fracture, were genotyped for three non-synonymous P2Y2 receptor gene SNPs. BMD was measured at three locations (total hip, lumbar spine, and femoral neck) using dual-energy X-ray absorptiometry. Differences in BMD between different genotypes were tested using analysis of covariance. In women, BMD values at all sites were significantly different between the genotypes for the Leu46Pro polymorphism, with women homozygous for the variant allele showing the highest BMD values (0.05 > p > 0.01). The Arg312Ser and Arg334Cys polymorphisms showed no differences in BMD values between the different genotypes. This is the first report that describes the association between the Leu46Pro polymorphism of the human P2Y2 receptor and the risk of osteoporosis.  相似文献   

11.
The distribution of P2Y2 receptor-immunoreactive (ir) neurons and fibers and coexistence of P2Y2 with P2X2 and P2X3 receptors, neuropeptide Y (NPY), calretinin (CR), calbindin (CB) and nitric oxide synthase (NOS) was investigated with immunostaining methods. The results showed that P2Y2-ir neurons and fibers were distributed widely in myenteric and submucous plexuses of the guinea pig stomach corpus, jejunum, ileum and colon. The typical morphology of P2Y2-ir neurons was a long process with strong positive staining on the same side of the cell body. The P2Y2-ir neurons could be Dogiel type 1. About 40–60% P2X3-ir neurons were immunoreactive for P2Y2 in the myenteric plexus and all the P2X3-ir neurons expressed the P2Y2 receptor in the submucosal plexus; almost all the NPY-ir neurons and the majority of CR-ir neurons were also immunoreactive for P2Y2, especially in the myenteric plexus of the small intestine; no P2Y2-ir neurons were immunoreactive for P2X2 receptors, CB and NOS. It is shown for the first time that S type/Dogiel type 1 neurons with fast P2X and slow P2Y receptor-mediated depolarizations could be those neurons expressing both P2Y2-ir and P2X3-ir and that they are widely distributed in myenteric and submucosal plexuses of guinea pig gut.  相似文献   

12.
The distribution of P2Y6 and P2Y12 receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30–36% of the ganglion cells in the myenteric plexus are strongly P2Y6 receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42–46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y12 receptor-ir. About 28–35% of P2Y6 receptor-ir neurons were found to coexist with NOS and 41–47% of them coexist with calretinin, but there was no coexistence of P2Y6 receptor-ir with calbindin. In contrast, all P2Y12 receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y12 receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y12 receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y12 receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.  相似文献   

13.
P2Y receptors are G protein-coupled receptors composed of eight known subunits (P2Y1, 2, 4, 6, 11, 12, 13, 14), which are involved in different functions in neural tissue. The present study investigates the expression pattern of P2Y4 receptors in the rat central nervous system (CNS) using immunohistochemistry and in situ hybridization. The specificity of the immunostaining has been verified by preabsorption, Western blot, and combined use of immunohistochemistry and in situ hybridization. Neurons expressing P2Y4 receptors were distributed widely in the rat CNS. Heavy P2Y4 receptor immunostaining was observed in the magnocellular neuroendocrine neurons of the hypothalamus, red nucleus, pontine nuclei, mesencephalic trigeminal nucleus, motor trigeminal nucleus, ambiguous nucleus, inferior olive, hypoglossal nucleus, and dorsal motor vagus nucleus. Both neurons and astrocytes express P2Y4 receptors. P2Y4 receptor immunostaining signals were mainly confined to cell bodies and dendrites of neurons, suggesting that P2Y4 receptors are mainly involved in regulating postsynaptic events. In the hypothalamus, all the vasopressin (VP) and oxytocin (OT) neurons and all the orexin A neurons were immunoreactive for P2Y4 receptors. All the neurons expressing P2Y4 receptors were found to express N-methyl-d-aspartate receptor 1 (NR1). These data suggest that purines and pyrimidines might be involved in regulation of the release of the neuropeptides VP, OT, and orexin in the rat hypothalamus via P2Y4 receptors. Further, the physiological and pathophysiological functions of the neurons may operate through coupling between P2Y4 receptors and NR1.  相似文献   

14.
Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.  相似文献   

15.
Microglial cells are the primary immune effector cells in the brain. Extracellular ATP, e.g., released after brain injury, may initiate microglial activation via stimulation of purinergic receptors. In the rat nucleus accumbens (NAc), the involvement of P2X and P2Y receptors in the generation of microglial reaction in vivo was investigated. A stab wound in the NAc increased immunoreactivity (IR) for P2X1,2,4,7 and P2Y1,2,4,6,12 receptors on microglial cells when visualized with confocal laser scanning microscopy. A prominent immunolabeling of P2X7 receptors with antibodies directed against the ecto- or endodomain was found on Griffonia simplicifolia isolectin-B4-positive cells. Additionally, the P2X7 receptor was colocalized with active caspase 3 but not with the anti-apoptotic marker pAkt. Four days after local application of the agonists α,βmeATP, ADPβS, 2MeSATP, and BzATP, an increase in OX 42- and G. simplicifolia isolectin-IR was observed around the stab wound, quantified both densitometrically and by counting the number of ramified and activated microglial cells, whereas UTPγS appeared to be ineffective. The P2 receptor antagonists PPADS and BBG decreased the injury-induced increase of these IRs when given alone and in addition inhibited the agonist effects. Further, the intra-accumbally applied P2X7 receptor agonist BzATP induced an increase in the number of caspase-3-positive cells. These results indicate that ATP, acting via different P2X and P2Y receptors, is a signaling molecule in microglial cell activation after injury in vivo. The up-regulation of P2X7-IR after injury suggests that this receptor is involved in apoptotic rather than proliferative effects.  相似文献   

16.
Subtypes of purinergic receptors involved in modulation of cytoplasmic calcium ion concentration ([Ca2+]i) and insulin release in mouse pancreatic β-cells were examined in two systems, pancreatic islets in primary culture and beta-TC6 insulinoma cells. Both systems exhibited some physiological responses such as acetylcholine-stimulated [Ca2+]i rise via cytoplasmic Ca2+ mobilization. Addition of ATP, ADP, and 2-MeSADP (each 100 μM) transiently increased [Ca2+]i in single islets cultured in the presence of 5.5 mM (normal) glucose. The potent P2Y1 receptor agonist 2-MeSADP reduced insulin secretion significantly in islets cultured in the presence of high glucose (16.7 mM), whereas a slight stimulation occurred at 5.5 mM glucose. The selective P2Y6 receptor agonist UDP (200 μM) transiently increased [Ca2+]i and reduced insulin secretion at high glucose, whereas the P2Y2/4 receptor agonist UTP and adenosine receptor agonist NECA were inactive. [Ca2+]i transients induced by 2-MeSADP and UDP were antagonized by suramin (100 μM), U73122 (2 μM, PLC inhibitor), and 2-APB (10 or 30 μM, IP3 receptor antagonist), but neither by staurosporine (1 μM, PKC inhibitor) nor depletion of extracellular Ca2+. The effect of 2-MeSADP on [Ca2+]i was also significantly inhibited by MRS2500, a P2Y1 receptor antagonist. These results suggested that P2Y1 and P2Y6 receptor subtypes are involved in Ca2+ mobilization from intracellular stores and insulin release in mouse islets. In beta-TC6 cells, ATP, ADP, 2-MeSADP, and UDP transiently elevated [Ca2+]i and slightly decreased insulin secretion at normal glucose, while UTP and NECA were inactive. RT-PCR analysis detected mRNAs of P2Y1 and P2Y6, but not P2Y2 and P2Y4 receptors.  相似文献   

17.
Purinergic P2Y2 G-protein coupled receptors play a key role in the regulation of hepatic Ca2+ signaling by extracellular ATP. The concentration of copper in serum is about 20 μM. Since copper accumulates in the liver in certain disease states, the purpose of these studies was to assess the effects of copper on P2Y2 receptors in a model liver cell line. Exposure to a P2Y2 agonist UTP increased [Ca2+]i by stimulating Ca2+ release from thapsigargin-sensitive Ca2+ stores. Pretreatment of HTC cells for several minutes with copper did not affect cell viability, but potently inhibited increases in [Ca2+]i evoked by UTP and thapsigargin. During this pretreatment, copper was not transported into the cytosol, and inhibited P2Y2 receptors in a concentration-dependent manner with the IC50 of about 15 μM. These results suggest that copper inhibits P2Y2 receptors through the effects on thapsigargin-sensitive Ca2+ stores by acting from an extracellular side. Further experiments indicated that these effect of copper may lead to inhibition of regulatory volume decrease (RVD) evoked by hypotonic solution. Thus, copper may contribute to defective regulation of purinergic signaling and liver cell volume in diseases associated with the increased serum copper concentration.  相似文献   

18.
Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5′-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca2+. Depletion of intracellular Ca2+ stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5′-triphosphate (UTP) and adenosine-5′-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y2/P2Y4-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.  相似文献   

19.
Phylogenetic analysis of transmembrane regions of GPCRs using PHYLIP indicated that the orphan receptor P2Y10 receptor was classified into the cluster consisting nucleotide and lipid receptors. Based on the results, we studied the abilities of nucleotides and lipids to activate the P2Y10 receptors. As a result, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) evoked intracellular Ca2+ increases in the CHO cells stably expressing the P2Y10 fused with a G16α protein. These Ca2+ responses were inhibited by S1P receptor and LPA receptor antagonists. The introduction of siRNA designed for P2Y10 receptor into the P2Y10-CHO cells effectively blocked both S1P- and LPA-induced Ca2+ increases. RT-PCR analysis showed that the mouse P2Y10 was expressed in reproductive organs, brain, lung and skeletal muscle, suggesting the receptor plays physiological roles throughout the whole body. In conclusion, the P2Y10 receptor is the first receptor identified as a dual lysophospholipid receptor.  相似文献   

20.
Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号