首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Bcl-2 family protein BAD promotes apoptosis by binding through its BH3 domain to Bcl-x(L) and related cell death suppressors. When BAD is phosphorylated on either Ser(112) or Ser(136), it forms a complex with 14-3-3 in the cytosol and no longer interacts with Bcl-x(L) at the mitochondria. Here we show that phosphorylation of a distinct site Ser(155), which is at the center of the BAD BH3 domain, directly suppressed the pro-apoptotic function of BAD by eliminating its affinity for Bcl-x(L). Protein kinase A functioned as a BAD Ser(155) kinase both in vitro and in cells. BAD Ser(155) was found to be a major site of phosphorylation induced following stimulation by growth factors and prevented by protein kinase A inhibitors but not by inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Growth factors inhibited BAD-induced apoptosis in both a Ser(112)/Ser(136)- and a Ser(155)-dependent fashion. Thus, growth factors engage an anti-apoptotic signaling pathway that inactivates BAD by direct modification of its BH3 cell death effector domain.  相似文献   

2.
Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.  相似文献   

3.
Reversible phosphorylation modulates a cells’ susceptibility to apoptosis. The phosphorylation status of BAD, a member of the Bcl-2 protein family, is an important checkpoint governing life-or-death decisions: Phosphorylation of serine residues 112, 136 and 155 on BAD prevents apoptosis. Here we report that BAD is a substrate for PP2C. Ser155 is involved in heterodimerization with Bcl-XL. We could demonstrate that PP1, PP2A and PP2C act on this site in vitro. However, only PP2C gives priority to P-Ser155 compared to P-Ser112 and P-Ser136 on BAD. The results indicate that PP2C is an additional factor triggering the pro-apoptotic function of BAD.  相似文献   

4.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

5.
Bad is a pro-apoptotic member of the Bcl-2 family of proteins that is thought to exert a death-promoting effect by heterodimerization with Bcl-X(L), nullifying its anti-apoptotic activity. Growth factors may promote cell survival at least partially through phosphorylation of Bad at one or more of Ser-112, -136, or -155. Our previous work showed that Bad is also phosphorylated in response to cytokines at another site, which we now identify as Ser-170. The functional role of this novel phosphorylation site was assessed by site-directed mutagenesis and analysis of the pro-apoptotic function of Bad in transiently transfected HEK293 and COS-7 cells or by stable expression in the cytokine-dependent cell line, MC/9. In general, mutation of Ser-170 to Ala results in a protein with increased ability to induce apoptosis, similar to the S112A mutant. Mutation of Ser-170 to Asp, mimicking a constitutively phosphorylated site, results in a protein that is virtually unable to induce apoptosis. Similarly, the S112A/S170D double mutant does not cause apoptosis in HEK293 and MC/9 cell lines. These data strongly suggest that phosphorylation of Bad at Ser-170 is a critical event in blocking the pro-apoptotic activity of Bad.  相似文献   

6.
Ye DZ  Jin S  Zhuo Y  Field J 《PloS one》2011,6(11):e27637

Background

Cell survival depends on the balance between protective and apoptotic signals. When the balance of signals tips towards apoptosis, cells undergo programmed cell death. This balance has profound implications in diseases including cancer. Oncogenes and tumor suppressors are mutated to promote cell survival during tumor development, and many chemotherapeutic drugs kill tumor cells by stimulating apoptosis. BAD is a pro-apoptotic member of the Bcl-2 family of proteins, which can be phosphorylated on numerous sites to modulate binding to Bcl-2 and 14-3-3 proteins and inhibit its pro-apoptotic activities. One of the critical phosphorylation sites is the serine 112 (S112), which can be phosphorylated by several kinases including Pak1.

Methodology/Principal Findings

We mapped the Pak phosphorylation sites by making serine to alanine mutations in BAD and testing them as substrates in in vitro kinase assays. We found that the primary phosphorylation site is not S112 but serine 111 (S111), a site that is sometimes found phosphorylated in vivo. In transfection assays of HEK293T cells, we showed that Pak1 required Raf-1 to stimulate phosphorylation on S112. Mutating either S111 or S112 to alanine enhanced binding to Bcl-2, but the double mutant S111/112A bound better to Bcl-2. Moreover, BAD phosphorylation at S111 was observed in several other cell lines, and treating one of them with the Pak1 inhibitor 2,2′-Dihydroxy-1,1′-dinaphthyldisulfide (IPA-3) reduced phosphorylation primarily at S112 and to a smaller extent at S111, while Raf inhibitors only reduced phosphorylation at S112.

Conclusion/Significance

Together, these findings demonstrate that Pak1 phosphorylates BAD directly at S111, but phosphorylated S112 through Raf-1. These two sites of BAD serve as redundant regulatory sites for Bcl-2 binding.  相似文献   

7.
Kang HY  Lee S  Park SG  Yu J  Kim Y  Jung G 《The Biochemical journal》2006,398(2):311-317
Protein-protein interactions can be regulated by protein modifications such as phosphorylation. Some of the phosphorylation sites (Ser155, Ser162 and Ser170) of HBV (hepatitis B virus) Cp have been discovered and these sites are implicated in the regulation of viral genome encapsidation, capsid localization and nucleocapsid maturation. In the present report, the dimeric form of HBV Cp was phosphorylated by PKA (protein kinase A), but not by protein kinase C in vitro, and the phosphorylation of dimeric Cp facilitated HBV core assembly. Matrix-assisted laser-desorption ionization-time-of-flight analysis revealed that the HBV Cp was phosphorylated at Ser87 by PKA. This was further confirmed using a mutant HBV Cp with S87G mutation. The S87G mutation inhibited the phosphorylation and, as a result, the in vitro HBV core assembly was not facilitated by PKA. In addition, when either pCMV/FLAG-Core(WT) or pCMV/FLAG-Core(S87G) was transfected into HepG2 cells, few mutant Cps (S87G) assembled into capsids compared with the wild-type (WT) Cps, although the same level of total Cps was expressed in both cases. In conclusion, PKA facilitates HBV core assembly through phosphorylation of the HBV Cp at Ser87.  相似文献   

8.
BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival   总被引:20,自引:0,他引:20  
The BH3 domain of BAD mediates its death-promoting activities via heterodimerization to the Bcl-XL family of death regulators. Growth and survival factors inhibit the death-promoting activity of BAD by stimulating phosphorylation at multiple sites including Ser-112 and Ser-136. Phosphorylation at these sites promotes binding of BAD to 14-3-3 proteins, sequestering BAD away from the mitochondrial membrane where it dimerizes with Bcl-XL to exert its killing effects. We report here that the phosphorylation of BAD at Ser-155 within the BH3 domain is a second phosphorylation-dependent mechanism that inhibits the death-promoting activity of BAD. Protein kinase A, RSK1, and survival factor signaling stimulate phosphorylation of BAD at Ser-155, blocking the binding of BAD to Bcl-XL. RSK1 phosphorylates BAD at both Ser-112 and Ser-155 and rescues BAD-mediated cell death in a manner dependent upon phosphorylation at both sites.  相似文献   

9.
10.
Signaling pathways between cell surface receptors and the BCL-2 family of proteins regulate cell death. Survival factors induce the phosphorylation and inactivation of BAD, a proapoptotic member. Purification of BAD kinase(s) identified membrane-based cAMP-dependent protein kinase (PKA) as a BAD Ser-112 (S112) site-specific kinase. PKA-specific inhibitors blocked the IL-3-induced phosphorylation on S112 of endogenous BAD as well as mitochondria-based BAD S112 kinase activity. A blocking peptide that disrupts type II PKA holoenzyme association with A-kinase-anchoring proteins (AKAPs) also inhibited BAD phosphorylation and eliminated the BAD S112 kinase activity at mitochondria. Thus, the anchoring of PKA to mitochondria represents a focused subcellular kinase/substrate interaction that inactivates BAD at its target organelle in response to a survival factor.  相似文献   

11.
Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.  相似文献   

12.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

13.
An earlier report showed that the U(S)3 protein kinase blocked the apoptosis induced by the herpes simplex virus 1 (HSV-1) d120 mutant at a premitochondrial stage. Further studies revealed that the kinase also blocks programmed cell death induced by the proapoptotic protein BAD. Here we report the effects of the U(S)3 protein kinase on the function and state of a murine BAD protein. Specifically, (i) in uninfected cells, BAD was processed by at least two proteolytic cleavages that were blocked by a general caspase inhibitor. The untreated transduced cells expressed elevated caspase 3 activity. (ii) In cells cotransduced with the U(S)3 protein kinase, the BAD protein was not cleaved and the caspase 3 activity was not elevated. (iii) Inasmuch as the U(S)3 protein kinase blocked the proapoptotic activity and cleavage of a mutant (BAD3S/A) in which the codons for the regulatory serines at positions 112, 136, and 155 were each replaced with alanine codons, the U(S)3 protein kinase does not act by phosphorylation of these sites nor was the phosphorylation of these sites required for the antiapoptotic function of the U(S)3 protein kinase. (iv) The U(S)3 protein kinase did not enable the binding of the BAD3S/A mutant to the antiapoptotic proteins 14-3-3. Finally, (v) whereas cleavage of BAD at ASP56 and ASP61 has been reported and results in the generation of a more effective proapoptotic protein with an M(r) of 15,000, in this report we also show the existence of a second caspase-dependent cleavage site most likely at the ASP156 that is predicted to inactivate the proapoptotic activity of BAD. We conclude that the primary effect of U(S)3 was to block the caspases that cleave BAD at either residue 56 or 61 predicted to render the protein more proapoptotic or at residue 156, which would inactivate the protein.  相似文献   

14.
Pyk1 (pyruvate kinase 1) from Saccharomyces cerevisiae was characterized as a substrate for PKA (protein kinase A) from bovine heart and yeast. By designing Pyk1 synthetic peptides containing potential PKA sequence targets (Ser22, Thr94 and Thr478) we determined that the peptide S22 was a substrate for PKA in vitro, with a K(sp)* (specificity constant) 10-fold and 3-fold higher than Kemptide for bovine heart and yeast PKA respectively. In vitro phosphorylation of the Pyk1 S22A mutant protein was decreased by as much as 90% when compared with wild-type Pyk1 and the Pyk1 T94A mutant. The K(sp)* values for Pyk1 and Pyk1 T94A were the same, indicating that both proteins are phosphorylated at the same site by PKA. Two-dimensional PAGE of Pyk1 and Pyk1 S22A indicates that in vivo the S22A mutation prevented the formation of one of the Pyk1 isoforms. We conclude that in yeast the major PKA phosphorylation site of Pyk1 is Ser22. Phosphorylation of Ser22 leads to a Pyk1 enzyme that is more active in the absence of FBP (fructose 1,6-bisphosphate). The specificity of yeast and mammalian PKA towards the S22 peptide and towards whole Pyk1 protein was measured and compared. The K(sp)* for the S22 peptide is higher than that for Pyk1, indicating that the peptide modelled on Pyk1 is a much better substrate than Pyk1, regardless of which tissue was used as the source of PKA. However, the K(m) of Pyk1 protein is lower than that of the better substrate, the S22 peptide, indicating that ground-state substrate binding is not the major determinant of substrate specificity for PKA.  相似文献   

15.
Ser55 of neurofilament L (NF-L) is reported to be partly phosphorylated in neurons and to be phosphorylated by cyclic AMP-dependent protein kinase (PKA). Bovine NF-L was phosphorylated by PKA in a low concentration of MgCl2 (0.3 mM) and digested by trypsin. Trypsin-digested fragments were assigned by MALDI/ TOF (matrix-assisted laser desorption and ionization/ time-of-flight) mass spectrometry. Phosphorylation sites were found at Ser41, Ser55, and Ser62 in the head region, with Ser55 considered the preferred site. A site-specific phosphorylation-dependent antibody against Ser55 rendered NF-L phosphorylated at Ser55 detectable in primary cultured rat neurons. One-hour treatment with 20 nM okadaic acid increased the phosphorylation level of Ser55, and co-treatment with 10 microM forskolin enhanced it. However, forskolin alone did not elevate the phosphorylation level. As a consequence, NF-L may be phosphorylated at Ser55 by PKA or by a PKA-like kinase in vivo; however, the phosphorylation level of Ser55 may be modulated by certain phosphatases sensitive to okadaic acid.  相似文献   

16.
CFTR (cystic fibrosis transmembrane conductance regulator), the protein whose dysfunction causes cystic fibrosis, is a chloride ion channel whose gating is controlled by interactions of MgATP with CFTR's two cytoplasmic nucleotide binding domains, but only after several serines in CFTR's regulatory (R) domain have been phosphorylated by cAMP-dependent protein kinase (PKA). Whereas eight R-domain serines have previously been shown to be phosphorylated in purified CFTR, it is not known how individual phosphoserines regulate channel gating, although two of them, at positions 737 and 768, have been suggested to be inhibitory. Here we show, using mass spectrometric analysis, that Ser 768 is the first site phosphorylated in purified R-domain protein, and that it and five other R-domain sites are already phosphorylated in resting Xenopus oocytes expressing wild-type (WT) human epithelial CFTR. The WT channels have lower activity than S768A channels (with Ser 768 mutated to Ala) in resting oocytes, confirming the inhibitory influence of phosphoserine 768. In excised patches exposed to a range of PKA concentrations, the open probability (P(o)) of mutant S768A channels exceeded that of WT CFTR channels at all [PKA], and the half-maximally activating [PKA] for WT channels was twice that for S768A channels. As the open burst duration of S768A CFTR channels was almost double that of WT channels, at both low (55 nM) and high (550 nM) [PKA], we conclude that the principal mechanism by which phosphoserine 768 inhibits WT CFTR is by hastening the termination of open channel bursts. The right-shifted P(o)-[PKA] curve of WT channels might explain their slower activation, compared with S768A channels, at low [PKA]. The finding that phosphorylation kinetics of WT or S768A R-domain peptides were similar provides no support for an alternative explanation, that early phosphorylation of Ser 768 in WT CFTR might also impair subsequent phosphorylation of stimulatory R-domain serines. The observed reduced sensitivity to activation by [PKA] imparted by Ser 768 might serve to ensure activation of WT CFTR by strong stimuli while dampening responses to weak signals.  相似文献   

17.
BAD, a proapoptotic molecule of the BCL2 family, is regulated by reversible phosphorylation. During survival, BAD is sequestered by 14-3-3 through serine 136 phosphorylation and is dissociated from BCL-X(L) through serine 155 phosphorylation. We report that phosphoserine 112 (pSer112) dephosphorylation functions as a gatekeeper for BAD-mediated apoptosis. During apoptosis, dephosphorylation of pSer112 preceded pSer136 dephosphorylation. Dephosphorylation of pSer112 accelerated dephosphorylation of pSer136, and inhibition of pSer112 dephosphorylation prevented pSer136 dephosphorylation, indicating that dephosphorylation of pSer112 is required for dephosphorylation of pSer136. Protein phosphatase 2A (PP2A) is the major pSer112 phosphatase. PP2A competed with 14-3-3 for BAD binding, and survival factor withdrawal enhanced PP2A association with BAD. Dephosphorylation of the critical residue, pSer136, could only be blocked by inhibition of all known subfamilies of serine/threonine phosphatases, suggesting that multiple phosphatases are involved in pSer136 dephosphorylation. Inhibition of PP2A rescued FL5.12 cells from apoptosis, demonstrating a physiologic role for PP2A-mediated pSer112 dephosphorylation. Thus, PP2A dephosphorylation of pSer112 is the key initiating event regulating the activation of BAD during interleukin-3 withdrawal-induced apoptosis.  相似文献   

18.
A-Kinase anchor proteins (AKAPs) immobilize and concentrate protein kinase A (PKA) isoforms at specific subcellular compartments. Intracellular targeting of PKA holoenzyme elicits rapid and efficient phosphorylation of target proteins, thereby increasing sensitivity of downstream effectors to cAMP action. AKAP121 targets PKA to the cytoplasmic surface of mitochondria. Here we show that conditional expression of AKAP121 in PC12 cells selectively enhances cAMP.PKA signaling to mitochondria. AKAP121 induction stimulates PKA-dependent phosphorylation of the proapoptotic protein BAD at Ser(155), inhibits release of cytochrome c from mitochondria, and protects cells from apoptosis. An AKAP121 derivative mutant that localizes on mitochondria but does not bind PKA down-regulates PKA signaling to the mitochondria and promotes apoptosis. These findings indicate that PKA anchored by AKAP121 transduces cAMP signals to the mitochondria, and it may play an important role in mitochondrial physiology.  相似文献   

19.
In order to examine the possible involvements of Ca2+/calmodulin-dependent protein kinases (CaM kinases) in the regulation of ribosomal functions, we tested the phosphorylation of rat ribosomal protein S19 (RPS19) by various CaM kinases in vitro . We found that CaM kinase Iα, but not CaM kinase Iβ1, Iβ2, II, or IV, robustly phosphorylated RPS19. From the consensus phosphorylation site sequence, Ser59, Ser90, and Thr124 were likely to be phosphorylated; therefore, we mutated each amino acid to alanine and found that the mutation of Ser59 to alanine strongly attenuated phosphorylation by CaM kinase Iα, suggesting that Ser59 was a major phosphorylation site. Furthermore, we produced a specific antibody against RPS19 phosphorylated at Ser59, and found that Ser59 was phosphorylated both in GT1-7 cells and rat brain. Phosphorylation of RPS19 in GT1-7 cells was inhibited by KN93, an inhibitor of CaM kinases. Immunoblot analysis after subcellular fractionation of rat brain demonstrated that phosphorylated RPS19 was present in 80S ribosomes. Phosphorylation of RPS19 by CaM kinase Iα augmented the interaction of RPS19 with the previously identified S19 binding protein. These results suggest that CaM kinase Iα regulates the functions of RPS19 through phosphorylation of Ser59.  相似文献   

20.
The phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB)/Bad signal transduction pathway is engaged in the control of apoptosis in many different cell types, particularly through phosphorylation of the Bcl-2 family protein Bad. We examined the involvement of this pathway in the control of programmed cell death in the retina of developing rats. PKB is constitutively phosphorylated in retinal tissue in vitro, whereas Bad was dephosphorylated both in Ser112 and Ser136. Cell death induced by either the PI3K inhibitor LY294002, or the general kinase inhibitor 2-aminopurine, were followed by PKB dephosphorylation, but PKB was not modulated during cell death induced by the protein synthesis inhibitor anisomycin. Treatment of retinal tissue cultures with forskolin, which increases intracellular levels of cAMP, partially blocked apoptosis induced by both anisomycin and 2-aminopurine, but not by LY294002, whereas forskolin invariably induced phosphorylation of Bad on both Ser112 and Ser136. The data suggest that Bad may be engaged in survival pathways in the immature retina, but pathways other than PI3K/PKB/Bad, and phosphorylation sites other than Ser112 and Ser136 in the Bad protein control cell survival in retinal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号