首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polysaccharide YCP was prepared from a marine filamentous fungus Keissleriella sp. YS4108, which exhibited as a molecular weight (Mw) of 2.4x10(3) kDa and its three sulfated derivatives (YCP-SL, YCP-SM and YCP-SH) were synthesized, the degree of substitution (DS) of which were determined to be 0.13, 0.99 and 1.3, with the average molecular weight 0.64x10(3), 0.57x10(3) and 0.45x10(3) kDa, respectively. Anticoagulant activity and antiplatelet aggregation activity of these sulfated derivates were evaluated by activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and platelet aggregation assay. The results showed that YCP sulfates significantly prolonged APTT, TT and PT. The derivates showed no effects on thrombin in the presence or in the absence of antithrombin III (AT III) or heparin cofactor II (HC II), while the derivates effectively inhibited factor Xa in the presence of AT III. At the same time, YCP-SH also possessed potent antiplatelet aggregation activity in vitro compared with aspirin. YCP sulfates specifically interfered with different stages of the coagulation cascade, and the anticoagulant activity improved with the increasing DS and decreased Mw.  相似文献   

2.
Both polyanetholesulphonic acid and xylan sulphate prolonged the partial thromboplastin clotting time of plasma. The anticoagulant effect of both compounds was reduced following pre-incubation of plasma with antiserum specific for antithrombin III. Polyanetholesulphonic acid was more effective than xylan sulphate in inhibiting thrombin-initiated clotting of plasma, and potentiated antithrombin III inhibition of both thrombin and Xa. Xylan sulphate was more effective in potentiating antithrombin III inhibition of Xa than of thrombin. These differential effects of xylan sulphate on different blood serine proteases are discussed in terms of the antithrombin III-mediated anticoagulant activity of heparin.  相似文献   

3.
The relationship between thrombomodulin-associated O-linked glycosammoglycans (GAGs) and the exogenous GAGs heparin or dermatan sulfate was studied in the inhibition of thrombin by antithrombin III (AT III) or heparin cofactor II (HC II). Both rabbit thrombomodulin (TM) and two glycoforms (a high-Mr form containing GAGs and a low-Mr form lacking the majority of O-linked GAGs) of a recombinant human TM deletion mutant (rec-TM) were used. The rapid inactivation of thrombin by HC II in the presence of dermatan sulfate was prevented by both the high-Mr rec-TM and the rabbit TM. In contrast, both rabbit TM treated with chondroitin ABC lyase to remove O-linked GAGs and the low-Mr form of rec-TM had only weak protecting effects. In the absence of exogeneous dermatan sulfate, thrombin inhibition by a high concentration of HC II was slightly accelerated by the high-Mr form of rec-TM but protected by rabbit TM. When thrombin inhibition by AT III in the presence of heparin was studied, both high-Mr rec-TM and rabbit TM again invoked a similar reduction of inactivation rates, whereas in the absence of exogenous heparin, both high-Mr forms accelerated thrombin inhibition by AT III. The diverse reactivities of various forms of TM towards HC II and AT III were also observed during protein C activation by the thrombin-TM complex. These results suggest that thrombin activity at the vessel wall or in fluid phase may undergo major kinetic modulations depending on the type of protease inhibitor, the presence or absence of exogenous GAGs and the glycosylation phenotype of TM. The dependence of TM anticoagulant function on the presence of an intrinsic GAG moiety suggests that variant glycoforms of this endothelial cell cofactor may be expressed differently in a species-, organ-, or tissue-specific manner as a means to regulate TM function in diverse vasculatures.  相似文献   

4.
We have proposed previously that the steps in coagulation most sensitive to inhibition by heparin are the thrombin-dependent amplification reactions, and that prothrombinase is formed in heparinized plasma only after Factor Xa activates Factor VIII and Factor V. These propositions were based on the demonstration that both heparin and Phe-Pro-Arg-CH2Cl completely inhibited 125I-prothrombin activation for up to 60 s when contact-activated plasma (CAP) was replenished with Ca2+. Furthermore, the addition of thrombin to CAP before heparin or Phe-Pro-Arg-CH2Cl completely reversed their inhibitory effects. Additional support for the above hypotheses is provided in this study by demonstrating that, when the activity of thrombin is suppressed by heparin (indirectly) or by Phe-Pro-Arg-CH2Cl (directly), exogenous Factor Xa reverses the ability of these two agents to inhibit prothrombin activation. Prothrombin activation was initiated by adding Factor Xa (1 nM) or thrombin (1 or 10 nM) simultaneously with CaCl2 to CAP. In the absence of heparin or Phe-Pro-Arg-CH2Cl, prothrombin activation was seen 15 s later in either case. Heparin failed to delay, and Phe-Pro-Arg-CH2Cl delayed for 15 s, prothrombin activation in CAP supplemented with Factor Xa. In contrast, heparin and Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation for at least 45 s in CAP supplemented with 1 nM-thrombin. Heparin failed to delay prothrombin activation in CAP supplemented with 10 nM-thrombin, whereas Phe-Pro-Arg-CH2Cl completely inhibited prothrombin activation in this plasma for 45 s. These results suggest that in CAP: (1) Factor Xa can effectively activate Factor VIII and Factor V when the proteolytic activity of thrombin is suppressed; (2) heparin-antithrombin III is less able to inhibit Factor Xa than thrombin; (3) suppression of the thrombin-dependent amplification reactions is the primary anticoagulant effect of heparin.  相似文献   

5.
The anticoagulant properties of mast cell product, chondroitin sulphate E   总被引:2,自引:0,他引:2  
The anticoagulant potency in vitro of chondroitin sulphate E has been found to be similar to that of the heparinoids. In purified systems chondroitin sulphate E was shown to be principally an activator of heparin cofactor II. Maximum acceleration of heparin cofactor II:thrombin interaction was 185-fold (9.3 X 10(7) M-1 min-1), antithrombin III:thrombin interaction was 11-fold (4.16 X 10(6) M-1 min-1) and antithrombin III:factor Xa was 146-fold (3.86 X 10(6) M-1 min-1). Chondroitin sulphate E was observed to prolong the thrombin clotting time of fibrinogen in the absence of antithrombin III and heparin cofactor II. The effect appeared to be related to interference in thrombin:fibrinogen interaction rather than in fibrin monomer polymerization.  相似文献   

6.
To elucidate the role of the COOH-terminal region of antithrombin III, we studied the effects of synthetic peptides corresponding to its sequence on the amidolytic and proteolytic activities of thrombin and Factor Xa in the presence or absence of the inhibitor, antithrombin III. The peptides ANRPFLVFI and IIFMGRVANP corresponding to residues Ala404 to Ile412 and Ile420 to Pro429, respectively, blocked the inhibition by antithrombin III. The effect of IIFMGRVANP was reduced in the presence of heparin. Both peptides at a concentration of 1 mM blocked complex formation between antithrombin III and thrombin or Factor Xa. The two peptides, particularly IIFMGRVANP, directly enhanced the amidolytic activity of thrombin and Factor Xa on the synthetic substrate Boc-Ala-Gly-Arg-MCA (where Boc is t-butoxycarbonyl and MCA is 4-methylcoumarin), which corresponds to residues P3-P1 of the reactive site of antithrombin III, and also on other substrates due to increased Vmax. IIFMGRVANP also shortened the thrombin-induced fibrinogen clotting time, whereas ANRPFLVFI inhibited the thrombin-catalyzed activation of protein C both in the presence and absence of thrombomodulin. The direct effect of ANRPFLVFI and IIFMGRVANP on thrombin was confirmed by enhancement of the incorporation of dansylarginine-N-(3-ethyl-1,5-pentanediyl)amide into thrombin. These findings suggest that the COOH-terminal region of antithrombin III interacts with thrombin and Factor Xa to increase the reactivity of the enzyme, which may enhance acyl-bond formation between the inhibitor and the enzyme.  相似文献   

7.
Heparin and heparin fragments in the molecular mass range 1,700-20,000 Da were examined for their ability to accelerate the antithrombin III (AT III)-dependent inhibition of human factor Xa and the prothrombin converting complex (prothrombinase) during human prothrombin activation. The prothrombinase reaction was modeled by a 3-parameter 2-exponential equation to determine the initial rate of prothrombin activation and the pseudo-first order rate constants of inhibition of prothrombinase and in situ generated thrombin activity. The catalytic specific activities of the heparins increased with increasing molecular size for both the inhibition of prothrombinase and factor Xa. A 10-fold increase over the entire Mr range was found. In contrast to results obtained by others (Ellis, V., Scully, M. F., and Kakkar, V. V. (1986) Biochem. J. 233, 161-165; Barrowcliffe, T. W., Havercroft, S. J., Kemball-Cook, G., and Lindahl, U. (1987) Biochem. J. 243, 31-37), all the heparins showed a 5-fold higher rate of inhibition of factor Xa when compared with the inhibition of prothrombinase, indicating that the factor Va-mediated protection of factor Xa from inhibition by AT III/heparin is independent of the molecular size of the heparin. Our original approach has also revealed a hitherto unrecognized phenomenon, namely, in addition to the accelerating effect of the heparins on the rate of formation of the inactive AT III-factor Xa complex, heparins with Mr greater than 4,500 reduce the initial rate of thrombin generation in the presence of AT III in a concentration-dependent way. We hypothesize that the formation of the dissociable ternary AT III-heparin-factor Xa complex results in a (partial) loss of factor Xa activity towards its natural substrate prothrombin.  相似文献   

8.
The anticoagulant, lipolytic and protamine reversible effects of high doses of low molecular weight (LMW) heparin 21-23 and unfractionated heparin were compared in man. 7,500 units of each heparin were applied, which corresponds to 90 mg LMW heparin and 48 mg unfractionated heparin. The anticoagulant properties of the LMW heparin are characterized by a doubled half life of factor Xa activity, smaller influence on aPTT and thrombin after intravenous (i.v.) and subcutaneous (s.c.) injection, and higher bioavailability of factor Xa activity after s.c. administration (90% versus 15%). Protamine chloride completely neutralizes the effect on aPTT and thrombin and reduces the anti factor Xa activity by 60%. The bleeding time is prolonged by both normal and LMW heparin by 20%. This effect is normalized by protamine chloride, too. Thrombelastography with recalcified whole blood demonstrates that protamine chloride shortens but not completely normalizes the coagulation time in presence of either unfractionated or LMW heparin. The half life of lipoprotein lipase (LPL) activity is 60 min after i.v. administration of unfractionated heparin and 120 min with LMW heparin. Although the release of lipases (LPL and HTGL) is higher after i.v. and s.c. administration of the LMW heparin they do not induce higher releases of free fatty acids. This indicates that the lipolytic activity of this LMW heparin and unfractionated heparin is similar. The results show an improved anticoagulant pharmacological profile of this LMW heparin as compared to unfractionated heparin. Protamine normalizes the anticoagulant effects of LMW heparin with exception of a residual anti factor Xa activity and normalizes the changes of bleeding time and thrombelastography.  相似文献   

9.
The effects of autolysis on the structure of chicken calpain II.   总被引:2,自引:2,他引:0       下载免费PDF全文
Heparin catalyses the inhibition of two key enzymes of blood coagulation, namely Factor Xa and thrombin, by enhancing the antiproteinase activities of plasma antithrombin III and heparin cofactor II. In addition, heparin can directly inhibit the activation of Factor X and prothrombin. The contributions of each of these effects to the anticoagulant activity of heparin have not been delineated. We therefore performed experiments to assess how each of these effects of heparin contributes to its anticoagulant activity by comparing the effects of heparin, pentosan polysulphate and D-Phe-Pro-Arg-CH2Cl on the intrinsic pathway of coagulation. Unlike heparin, pentosan polysulphate catalyses only the inhibition of thrombin by plasma. D-Phe-Pro-Arg-CH2Cl is rapid enough an inhibitor of thrombin so that when added to plasma no complexes of thrombin with its inhibitors are formed, whether or not the plasma also contains heparin. Heparin (0.66 microgram/ml) and pentosan polysulphate (6.6 micrograms/ml) completely inhibited the intrinsic-pathway activation of 125I-prothrombin to 125I-prothrombin fragment 1 + 2 and 125I-thrombin. On the addition of thrombin, a good Factor V activator, to the plasma before each sulphated polysaccharide, the inhibition of prothrombin activation was demonstrable only in the presence of higher concentrations of the sulphated polysaccharide. D-Phe-Pro-Arg-CH2Cl also completely inhibited the intrinsic-pathway activation of prothrombin in normal plasma. The inhibitory effect of D-Phe-Pro-Arg-CH2Cl was reversed if thrombin was added to the plasma before D-Phe-Pro-Arg-CH2Cl. The inhibition of the activation of prothrombin by the three agents was also abolished with longer times with re-added Ca2+. Reversal of the inhibitory effects of heparin and pentosan polysulphate was associated with the accelerated formation of 125I-thrombin-antithrombin III and 125I-thrombin-heparin cofactor complexes respectively. These results suggest that the anticoagulant effects of heparin and pentosan polysulphate are mediated primarily by their ability to inhibit the thrombin-dependent activation of Factor V, thereby inhibiting the formation of prothrombinase complex, the physiological activator of prothrombin.  相似文献   

10.
In the blood coagulation cascade, heparin activates human plasma antithrombin III (hAT III), resulting in the inhibition of factor Xa. This polysaccharide also exhibits hemorrhagic tendency mediated by the inhibition of thrombin in heparinotherapy. Therefore, attention has focused on the development of low molecular weight heparins (LMW-heparins) that inhibit factor Xa but not thrombin. In this investigation, we examined the biochemical and physicochemical properties of hAT III-derived heparin-binding peptides (HBPs). Of all the tested HBPs, hAT III (123-139) exhibited the highest affinity with heparin and showed an inhibitory effect on the heparin-induced enhancement of hAT III activity toward factor Xa, indicating that hAT III (123-139) specifically interacts with the active region in heparin. We prepared a synthetic hAT III (123-139)-coupled affinity chromatography system, and demonstrated that this novel affinity chromatography is useful for fractionation of highly active moieties in LMW-heparins.  相似文献   

11.
The ability of heparin fractions of different molecular weight to potentiate the action of antithrombin III against the coagulation factors thrombin and Xa has been examined in purified reaction mixtures and in plasma. Residual thrombin and Xa have been determined by their peptidase activities against the synthetic peptide substrates H-D-Phe-Pip-Arg-pNA and Bz-Ile-Gly-Arg-pNA. High molecular weight heparin fractions were found to have higher anticoagulant activities than low molecular weight heparin when studied with both thrombin and Xa incubation mixtures in purified mixtures and in plasma. The inhibition of thrombin by heparin fractions and antithrombin III was unaffected by other plasma components. However, normal human plasma contained a component that inhibited the heparin and antithrombin III inhibition of Xa particularly when the high molecular weight heparin fraction was used. Experiments using a purified preparation of platelet factor 4 suggested that the platelet-derived heparin-neutralizing protein was not responsible for the inhibition.  相似文献   

12.
The kinetics of alpha-factor Xa inhibition by antithrombin III (AT) were studied in the absence and presence of heparin (H) with high affinity for antithrombin by stopped-flow fluorometry at I 0.3, pH 7.4 and 25 degrees C, using the fluorescence probe p-aminobenzamidine (P) and intrinsic protein fluorescence to monitor the reactions. Active site binding of p-aminobenzamidine to factor Xa was characterized by a 200-fold enhancement and 4-nm blue shift of the probe fluorescence emission spectrum (lambda max 372 nm), 29-nm red shift of the excitation spectrum (lambda max 322 nm), and dissociation constant (KD) of about 80 microM. Under pseudo-first order conditions [( AT]0, [H]0, [P]0 much greater than [Xa]0), the observed factor Xa inactivation rate constant (kobs) measured by p-aminobenzamidine displacement or residual enzymatic activity increased linearly with the "effective" antithrombin concentration (i.e. corrected for probe competition) up to 300 microM in the absence of heparin, indicating a simple bimolecular process with a rate constant of 2.1 x 10(3) M-1 s-1. In the presence of heparin, a similar linear dependence of kobs on effective AT.H complex concentration was found up to 25 microM whether the reaction was followed by probe displacement or the quenching of AT.H complex protein fluorescence due to heparin dissociation, consistent with a bimolecular reaction between AT.H complex and free factor Xa with a 300-fold enhanced rate constant of 7 x 10(5) M-1 s-1. Above 25 microM AT.H complex, an increasing dead time displacement of p-aminobenzamidine and a downward deviation of kobs from the initial linear dependence on AT.H complex concentration were found, reflecting the saturation of an intermediate Xa.AT.H complex with a KD of 200 microM and a limiting rate of Xa-AT product complex formation of 140 s-1. Kinetic studies at catalytic heparin concentrations yielded a kcat/Km for factor Xa at saturating antithrombin of 7 x 10(5) M-1 s-1 in agreement with the bimolecular rate constant obtained in single heparin turnover experiments. These results demonstrate that 1) the accelerating effect of heparin on the AT/Xa reaction is at least partly due to heparin promoting the ordered assembly of antithrombin and factor Xa in an intermediate ternary complex and that 2) heparin catalytic turnover is limited by the rate of conversion of the ternary complex intermediate to the product Xa-AT complex with heparin dissociation occurring either concomitant with this step or in a subsequent faster step.  相似文献   

13.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
An anticoagulant was isolated from a marine green alga, Codium cylindricum. The anticoagulant was composed mainly of galactose with a small amount of glucose, and was highly sulfated (13.1% as SO Na). The anticoagulant properties of the purified anticoagulant were compared with that of heparin by assays of activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) using normal human plasma. The anticoagulant showed similar activities with heparin, however, weaker than heparin. On the other hand, the anticoagulant did not affect PT even at the concentration at which APTT and TT were strongly prolonged. The anticoagulant did not potentiate antithrombin III (AT III) and heparin cofactor II (HC II), thus the anticoagulant mechanism would be different from that of other anticoagulants isolated so far from the genus Codium.  相似文献   

15.
Fucosylated chondroitin sulfate (FCScs) isolated from sea cucumber Cucumaria syracusana was characterized by Fourier Transform InfraRed spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy and high performance size exclusion chromatograph, a multi-angle laser light scattering detector, a viscometer and a differential refractive index (dRI) detector (HPSEC-MALLS-dRI). The anticoagulant activities of FCScs were studied by the classical clotting time assays and the purified systems containing thrombin and antithrombin or heparin cofactor II. The effect on thrombin generation was investigated using calibrated automated thrombography (CAT). The results obtained showed that the FCS with high sulfate content 31 % and relatively low average molecular weight of 36.3 kDa was isolated from C. syracusana in amount of ∼ 35.6 mg/g dry body wall. Structural analysis of this polysaccharide revealed the presence backbone structure of chondroitin sulfate chain branched by two types of fucose 2,4-O-di and 3,4-O-disulfated residues in respective ratios of 57.5 and 42.5 %. The FCScs exhibited a high anticoagulant activity mediated essentially by heparin cofactor II (HCII) and to lesser extent by antithrombin (AT) with IC50 values of 0.05 μg/mL and 0.09 μg/mL, respectively. Furthermore, the results of CAT assay showed that the velocity index decreases 3-times at 50 μg/mL in comparison with normal plasma. The overall results showed high anticoagulant activity attributed to the high sulfate content and abundance of disulfated fucose branches of FCScs which made it a promising candidate of anticoagulation drug.  相似文献   

16.
The rate of the reaction between thrombin and antithrombin III is greatly increased in the presence of heparin. Several mechanisms for this effect are possible. To study the problems commercial heparin was fractionated into one fraction of high anticogulant activity and one of low anticoagulant activity by affinity chromatography on matrix-bound antithrombin III. The strength of the binding of the two heparin fractions to antithrombin III and thrombin, respectively, was determined by a crossed immunoelectrophoresis technique. As was to be expected, the high activity fraction was strongly bound to antithrombin III while the low activity fraction was weakly bound. In contrast, thrombin showed equal binding affinity for both heparin fractions. The ability of the two heparin fractions to catalyse the inhibition of thrombin by antithrombin III was determined and was found to be much greater for the high activity heparin fraction. A mechanism for the reaction between thrombin and antithrombin III in the presence of small amounts of heparin is suggested, whereby antithrombin III first binds heparin and this complex then inhibits thrombin by interaction with both the bound heparin and the antithrombin III.  相似文献   

17.
Activated protein C (APC) exerts its physiologic anticoagulant role by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. The synthetic peptide-(311-325) (KRNRTFVLNFIKIPV), derived from the heavy chain sequence of APC, potently inhibited APC anticoagulant activity in activated partial thromboplastin time (APTT) and Xa-1-stage coagulation assays in normal and in protein S-depleted plasma with 50% inhibition at 13 microM peptide. In a system using purified clotting factors, peptide-(311-325) inhibited APC-catalyzed inactivation of factor Va in the presence or absence of phospholipids with 50% inhibition at 6 microM peptide. However, peptide-(311-325) had no effect on APC amidolytic activity or on the reaction of APC with the serpin, recombinant [Arg358]alpha 1-antitrypsin. Peptide-(311-325) surprisingly inhibited factor Xa clotting activity in normal plasma, and in a purified system it inhibited prothrombinase activity in the presence but not in the absence of factor Va with 50% inhibition at 8 microM peptide. The peptide had no significant effect on factor Xa or thrombin amidolytic activity and no effect on the clotting of purified fibrinogen by thrombin, suggesting it does not directly inhibit these enzymes. Factor Va bound in a dose-dependent manner to immobilized peptide-(311-325). Peptide-(311-315) inhibited the binding of factor Va to immobilized APC or factor Xa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Heparin and low-molecular-weight heparins (LMWHs) are anticoagulant drugs that mainly inhibit the coagulation cascade by indirectly interacting with factor Xa and factor IIa (thrombin). Inhibition of factor Xa by antithrombin (AT) requires the activation of AT by specific pentasaccharide sequences containing 3-O-sulfated glucosamine. Activated AT also inhibits thrombin by forming a stable ternary complex of AT, thrombin, and a polysaccharide (requires at least an 18-mer/octadeca-mer polysaccharide). The full structure of any naturally occurring octadecasaccharide sequence has yet to be determined. In the context of the development of LMWH biosimilars, structural data on such important biological mediators could be helpful for better understanding and regulatory handling of these drugs. Here we present the isolation and identification of an octadecasaccharide with very high anti-factor Xa activity (∼3 times higher than USP [U.S. Pharmacopeia] heparin). The octadecasaccharide was purified using five sequential chromatographic methods with orthogonal specificity, including gel permeation, AT affinity, strong anion exchange, and ion-pair chromatography. The structure of the octadecasaccharide was determined by controlled enzymatic sequencing and nuclear magnetic resonance (NMR). The isolated octadecasaccharide contained three consecutive AT-binding sites and was tested in coagulation assays to determine its biological activity. The isolation of this octadecasaccharide provides new insights into the modulation of thrombin activity.  相似文献   

19.
A polysaccharide was isolated from marine green algae Monostroma latissimum, and its chemical characteristic and anticoagulant activity were investigated. The results demonstrated that the polysaccharide was high rhamnose-containing sulfated polysaccharide, and was mainly composed of 1,2-linked l-rhamnose residues with sulfate groups substituted at positions C-3 and/or C-4. The sulfated polysaccharide exhibited high anticoagulant activities by assays of the activated partial thromboplastin time (APTT) and thrombin time (TT). The anticoagulant property of the sulfated polysaccharide was mainly attributed to powerful potentiation thrombin by heparin cofactor II.  相似文献   

20.
The influence of PGI2 on the activity and on the inactivation of enzymes participating in blood coagulation /thrombin and Factor Xa/ and fibrinolysis /plasmin/ were investigated. According to the results PGI2 has no effect on the activity of Factor Xa and plasmin nor on the inactivation of these enzymes by antithrombin-III in the absence and presence of heparin at a concentration of PGI2 up to 400 μg/ml. An acceleration of the inactivation of thrombin by antithrombin-III was found in the presence of PGI2 within a concentration of 100–400 μg/ml without any effect on the heparin-accelerated inactivation of thrombin by antithrombin. We got similar results using clotting tests for the assay and the application of synthetic substrate for thrombin. This inactivation-accelerating effect of PGI2 on thrombin was only demonstratable at a concentration five magnitudes higher than that of the anti-aggregation effect on platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号