首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat stomach and testis cDNAs corresponding to two alternatively spliced mRNAs encoding variants of a P-type ion-transport ATPase that closely resembles the yeast secretory pathway Ca2+ pump have been isolated and characterized. A partial kidney cDNA was identified previously using an oligonucleotide probe corresponding to part of the sarcoplasmic reticulum Ca(2+)-ATPase [Gunteski-Hamblin, A., Greeb, J., & Shull, G.E. (1988) J. Biol. Chem. 263, 15032-15040]. In the present study, we first isolated and characterized a stomach cDNA that contains the entire coding sequence. The 919 amino acid enzyme has the same apparent transmembrane organization and contains all of the conserved domains present in other P-type ATPases. Northern blot analyses demonstrate that 3.9- and 5-kilobase mRNAs corresponding to the cDNA were present in all tissues examined, suggesting that the protein it encodes performs a housekeeping function. Rat testis also contained a 3.7-kilobase mRNA that hybridized with a probe from the 5' end of the stomach cDNA but did not hybridize with a probe from the 3' end. Cloning and characterization of cDNAs corresponding to the smaller testis mRNA revealed that it is derived from the same gene but encodes a variant of the enzyme in which the C-terminal residue, Val-919, is replaced by the sequence Phe-919-Tyr-Pro-Lys-Ile-923. Similarity comparisons show that the two enzymes are more closely related to the known Ca2+ pumps than to other P-type ATPases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We describe the characterization of a rat kidney cDNA that encodes a novel Ca2+-transporting ATPase. The cDNA, termed RK 8-13, was isolated previously using an oligonucleotide hybridization probe corresponding to part of the ATP binding site of the sarcoplasmic reticulum Ca-ATPases (Gunteski-Hamblin, A.-M., Greeb, J., and Shull, G. E. (1988) J. Biol. Chem. 263, 15032-15040). The complete nucleotide sequence of the 4.5-kilobase cDNA has been determined, and the primary structure of the protein has been deduced. The enzyme consists of 999 amino acids, has an Mr of 109,223, and contains all of the conserved domains found in transport ATPases of the E1-E2 class. It exhibits 75-77% amino acid identity with the fast-twitch and slow-twitch/cardiac isoforms of the sarcoplasmic reticulum Ca-ATPase, and the hydropathy plots of the three enzymes are virtually identical. High levels of ATP-dependent Ca2+ uptake were demonstrated in microsomes of COS-1 cells that had been transfected with a construct consisting of the entire coding sequence of the cDNA in the expression vector p91023(B). Northern blot analyses of poly(A)+ RNA revealed that the mRNA for this protein is expressed in heart, skeletal muscle, uterus, brain, lung, liver, kidney, testes, small intestine, large intestine, and pancreas. These data show that the enzyme is a Ca2+-transporting ATPase and that its mRNA is expressed in a broad variety of both muscle and non-muscle tissues.  相似文献   

3.
4.
Recombinant DNA clones encoding the neurotensin/neuromedin N precursor protein have been isolated from both bovine hypothalamus cDNA and rat genomic libraries using a heterologous canine cDNA probe. Nucleotide sequence analysis of these clones and comparison with the previously determined canine sequence has revealed that 76% of the amino acid residues are conserved in all three species. The protein precursor sequences predicted from bovine hypothalamus and canine intestine cDNA clones vary at only 9 of 170 amino acid residues suggesting that within a species identical precursors are synthesized in both the central nervous system and intestine. The rat gene spans approximately 10.2 kilobases (kb) and is divided into four exons by three introns. The neurotensin and neuromedin N coding domains are tandemly positioned on exon 4. RNA blot analysis has revealed that the rat gene is transcribed to yield two distinct mRNAs, 1.0 and 1.5 kb in size, in all gastrointestinal and all neural tissues examined except the cerebellum. There is a striking variation in the relative levels of these two mRNAs between brain and intestine. The smaller 1.0-kb mRNA greatly predominates in intestine while both mRNA species are nearly equally abundant in hypothalamus, brain stem, and cortex. Sequence comparisons and RNA blot analysis indicate that these two mRNAs result from the differential utilization of two consensus poly(A) addition signals and differ in the extent of their 3' untranslated regions. The relative combined levels of the mRNAs in various brain and intestine regions correspond roughly with the relative levels of immunologically detectable neurotensin except in the cerebral cortex where mRNA levels are 6 times higher than anticipated.  相似文献   

5.
The complete sequence for the constant and 3' untranslated regions of a mouse gamma 2a immunoglobulin heavy chain mRNA is reported. The sequence is 1093 nucleotides long coding for the CH1 (amino-acids 118-214), the Hinge (215-230), the CH2 (231-340) and the CH3 (341-447). The 3' untranslated region is 103 nucleotides long preceding the poly(A). The nucleotide sequence predicts as in the case for gamma 1 and gamma 2b heavy chains an additional lysine residue before the termination codon. This sequence has been compared to the corresponding sequences of gamma 1 and gamma 2b heavy chain mRNAs. These sequences are respectively 75% and 84% homologous. The CH2 domains of gamma 2a and gamma 2b are 95% homologous at the nucleotide level. The cross-over point of a gamma 2a - gamma 2b heavy chain variant is located in a segment of 73 perfectly matching nucleotides. The 3' non coding regions of gamma 2a and gamma 2b are 89% homologous.  相似文献   

6.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

7.
Many murine cells express two mRNAs with markedly different sizes (2.0 and 3.1 kilobases (kb)) that hybridize with cDNA probes for cytosolic malic enzyme ((S)-malate NADP+ oxidoreductase (oxaloacetate-decarboxylating, EC 1.1.1.40). A series of overlapping cDNA clones corresponding to 3129 nucleotides of malic enzyme mRNA was isolated and sequenced to determine the relationship between the two mRNAs and establish the primary structure of mouse malic enzyme. The larger mRNA has an open reading frame of 1716 nucleotides followed by a 3' untranslated region of 1348 nucleotides. The sequence of an exceptionally G/C-rich (88%) portion (65 nucleotides) of the 5' noncoding region was also established. An uncommon poly A addition signal (AUUAAA) is used during the processing of the 3.1-kb mRNA. The 2.0-kb mRNA results from the utilization of another poly A addition signal that truncates the 3' noncoding sequence by approximately 1 kb. The mRNA coding sequence indicates that the malic enzyme subunit contains 572 amino acid residues and has a Mr of 64,000. Two putative components of an NADP-binding domain are located between residues 100 and 165. During the differentiation of 3T3-L1 preadipocytes into adipocytes both the rate of synthesis and relative mRNA concentration for malic enzyme and another lipogenic enzyme, ATP-citrate lyase, are coordinately increased 5-7-fold. However, as preadipocytes approach confluence, the mRNA levels for both lipogenic enzymes transiently increase 3-4-fold, whereas the rates of synthesis of the two proteins are only slightly elevated. Thus, lipogenic enzyme expression is controlled at a pretranslational level during adipogenesis, but the accumulation of the same enzymes may also be subject to translational control in the fibroblast-like preadipocytes. In contrast, mRNA coding for a third enzyme required for lipogenesis, glycerol-3-phosphate dehydrogenase, is not detected in 3T3-L1 preadipocytes, but rapidly accumulates during adipocyte development.  相似文献   

8.
9.
We have determined the nucleotide sequence of the 5' untranslated region and the sequence encoding the signal peptide for mRNAs of the chick alpha 1 type I and alpha 1 type III collagen. These sequences were obtained by synthesizing the corresponding cDNAs using as primers either a synthetic oligonucleotide to prime alpha 1 type I cDNA or a DNA fragment isolated from a genomic clone coding for alpha 1 type III collagen to prime the cognate cDNA. Both primers were selected so that the resulting cDNAs would be short and would contain sequence information for the 5' untranslated region and the signal peptide of the proteins. The nucleotide sequences of these cDNAs were compared with the corresponding sequence of alpha 2 type I collagen. In each mRNA the 5' untranslated segment is approximately 130 nucleotides and contains two or more AUG triplets preceding the AUG which serves as a translation initiation codon. A sequence of about 50 nucleotides surrounding the translation initiation codon is remarkably conserved in all three mRNAs, whereas the sequences preceding and following this segment diverge markedly. This homologous sequence contains an almost identical inverted repeat sequence which could form a stable stem-loop structure. The initiation codon and the AUG which precedes it are found at the same place within this symmetrical sequence and the distance between them is invariant. The rest of the conserved sequence shows a less perfect symmetry. This conserved sequence has not been found in other genes. Our data suggest that these three and perhaps other collagen genes contain an identical regulatory signal that may play a role in determining the level of expression of these genes by modulating translational efficiency.  相似文献   

10.
Five independent clones containing the natural chicken ovomucoid gene have been isolated from a chicken gene library. One of these clones, CL21, contains the complete ovomucoid gene and includes more than 3 kb of DNA sequences flanking both termini of the gene. Restriction endonuclease mapping, electron microscopy and direct DNA sequencing analyses of this clone have revealed that the ovomucoid gene is 5.6 kb long and codes for a messenger RNA of 821 nucleotides. The structural gene sequence coding Ifor the mature messenger RNA is split into at least eight segments by a minimum of seven intervening sequences of various sizes. The shortest structural gene segment is only 20 nucleotides long. All seven intervening sequences are located within the peptide coding region of the gene, and the sequences at the 5' and 3' untranslated regions of the mRNA are not interrupted by intervening sequences. The DNA sequences of the regions flanking the 5' and 3' termini of the gene have been determined. Thirty nucleotides before the start of the messenger RNA coding sequence is the heptanucleotide TATATAT, which is also present in a similar location relative to the chicken ovalbumin gene and other unique sequence eucaryotic genes. This sequence resembles that of the Pribnow box in procaryotic genes where a promoter function has been implicated. Seven nucleotides past the 3' end of the gene is the tetranucleotide TTGT, a sequence found to be present at identical locations as either TTTT or TTGT in other eucaryotic genes that have been sequenced. These conserved DNA sequences flanking eucaryotic genes may serve some regulator function in the expression of these genes.  相似文献   

11.
12.
Carp growth hormone: molecular cloning and sequencing of cDNA   总被引:5,自引:0,他引:5  
Y Koren  S Sarid  R Ber  V Daniel 《Gene》1989,77(2):309-315
cDNA clones of the fish Cyprinus carpio growth hormone (GH) mRNA have been isolated from a cDNA library prepared from carp pituitary gland poly(A)+RNA. The nucleotide sequence of one of the carp GH cDNA clones containing an insert of 1164 nucleotides (nt) was determined. The cDNA sequence was found to encode a polypeptide of 210 amino acids (aa) including a signal peptide of 22 aa and to contain 5' and 3' untranslated regions of the mRNA of 36 and 498 nt, respectively. The carp GH presents a 63% amino acid sequence homology with the salmon GH, has structural features common with other GH polypeptides of mammalian or avian origin and contains domains of conserved sequence near the N- and C-terminal regions. Southern blot hybridization of carp genomic DNA with GH cDNA probes shows the presence of at least two GH-coding sequences in the fish genome.  相似文献   

13.
Plasmids p749, p106, and p150 contain cDNA inserts complementary to rat skeletal muscle actin mRNA. Nucleotide sequence analysis indicates the following sequence relationships: p749 specifies codons 171 to 360; p150 specifies codons 357 to 374 together with 120 nucleotides of the 3'-non-translated region; p106 specifies the last actin amino acid codon, the termination codon and the entire 3' non-translated region. Plasmid p749 hybridized with RNA extracted from rat skeletal muscle, cardiac muscle, smooth (stomach) muscle, and from brain. It also hybridizes well with RNA extracted from skeletal muscle and brain of dog and chick. Plasmid p106 hybridized specifically with rat striated muscles (skeletal and cardiac muscle) mRNA but not with mRNA from rat stomach and from rat brain. It also hybridized to RNA extracted from skeletal muscle of rabbit and dog but not from chick. Thermal stability of the hybrids and sensitivity to S1 digestion also indicated substantial divergence between the 3' untranslated end of rat and dog skeletal muscle actins. The investigation shows that the coding regions of actin genes are highly conserved, whereas the 3' non-coding regions diverged considerably during evolution. Probes constructed from the 3' non-coding regions of actin mRNAs can be used to identify the various actin mRNA and actin genes.  相似文献   

14.
The allelism of the structural genes for the complex rabbit b allotypes of immunoglobulin kappa-light chains has been questioned because of observations of unexpected phenotypic expression of "latent" allotypes. We find that the coding sequences of the b4 and b5 "alleles" are only 80% homologous for the last 60 nucleotides but there is a high degree of homology (96%) in the 3' untranslated region (3'DT). The high conservation of 3' DT region sequences enabled us to detect kappa-light chain mRNAs from rabbits of different genetic types (b4, b5, b9 and bbas) on northern blots and dot blots. We can distinguish mRNA encoding b9 and b5 allotypes on dot blots with b5 fragment-probes of known sequence and detect mRNA produced by unstimulated cultured splenic lymphocytes. Analyses of mRNA from cultured cells manipulated to enhance mRNA synthesis and production of unexpected or "latent" b allotypes can now be conducted.  相似文献   

15.
16.
17.
18.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

19.
The nucleotide sequence of a cDNA encoding the proenzyme of mouse S-adenosylmethionine decarboxylase (AdoMetDC) including 257 nucleotides of the 5' untranslated region has been determined. Comparison of the nucleotide sequence of the mouse 5' untranslated region with those of other mammals shows it to be highly conserved. The 52 nucleotides upstream from the translation initiation codon are identical in human, rat, bovine and mouse. The polyamines, spermidine and spermine, have been shown to inhibit AdoMetDC mRNA translation. An RNA gel retardation assay demonstrated that a cytoplasmic extract from mouse brain forms an RNA-protein complex with the completely conserved 5' untranslated sequence and that the complex formation is highly dependent on the presence of spermine. Crosslinking by UV irradiation shows that the complex contains a 39-kDa protein interacting with the 5' untranslated sequence. These data demonstrate spermine-dependent specific protein binding to a highly conserved 5' untranslated region of an mRNA translationally regulated by polyamines.  相似文献   

20.
Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA   总被引:4,自引:0,他引:4  
A cDNA library was constructed using polyadenylated RNA from salmon (Oncorhynchus keta) Brockmann bodies, plasmid vector pBR322, and in vitro recombinant DNA techniques. Insulin-related clones were identified with a cDNA probe generated from the same RNA and enriched for insulin sequences. Two recombinants were shown to contain the nucleotide sequence of the entire coding region and parts of the 5' and 3' untranslated regions. The salmon preproinsulin mRNA is about 760 nucleotides long, 315 of which code for the protein, while about 190 and 200 nucleotides belong to the 5' and 3' flanking regions, respectively. Comparison of the nucleotide sequences of salmon insulin mRNA with those from other species reveals that sequence conservation is limited to the regions coding for the B and A peptides and two segments of the signal peptide. The C-peptide region exhibits no significant sequence homology with the C-peptides of other vertebrates. The 5' and 3' untranslated regions of the salmon preproinsulin mRNA are homologous only with the anglerfish mRNA, whereas there is no evident homology with those of birds and mammals. In addition to establishing the sequence of the preproinsulin mRNA, cloned salmon insulin cDNA provides a specific probe for the analysis and isolation of genomic DNA fragments containing insulin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号