首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent advances in high-throughput biotechnologies have led to the rapid growing research interest in reverse engineering of biomolecular systems (REBMS). 'Data-driven' approaches, i.e. data mining, can be used to extract patterns from large volumes of biochemical data at molecular-level resolution while 'design-driven' approaches, i.e. systems modeling, can be used to simulate emergent system properties. Consequently, both data- and design-driven approaches applied to -omic data may lead to novel insights in reverse engineering biological systems that could not be expected before using low-throughput platforms. However, there exist several challenges in this fast growing field of reverse engineering biomolecular systems: (i) to integrate heterogeneous biochemical data for data mining, (ii) to combine top-down and bottom-up approaches for systems modeling and (iii) to validate system models experimentally. In addition to reviewing progress made by the community and opportunities encountered in addressing these challenges, we explore the emerging field of synthetic biology, which is an exciting approach to validate and analyze theoretical system models directly through experimental synthesis, i.e. analysis-by-synthesis. The ultimate goal is to address the present and future challenges in reverse engineering biomolecular systems (REBMS) using integrated workflow of data mining, systems modeling and synthetic biology.  相似文献   

2.
Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology.  相似文献   

3.
4.
Multivariate metabolic profiles from biofluids such as urine and plasma are highly indicative of the biological fitness of complex organisms and can be captured analytically in order to derive top-down systems biology models. The application of currently available modeling approaches to human and animal metabolic pathway modeling is problematic because of multicompartmental cellular and tissue exchange of metabolites operating on many time scales. Hence, novel approaches are needed to analyze metabolic data obtained using minimally invasive sampling methods in order to reconstruct the patho-physiological modulations of metabolic interactions that are representative of whole system dynamics. Here, we show that spectroscopically derived metabolic data in experimental liver injury studies (induced by hydrazine and alpha-napthylisothiocyanate treatment) can be used to derive insightful probabilistic graphical models of metabolite dependencies, which we refer to as metabolic interactome maps. Using these, system level mechanistic information on homeostasis can be inferred, and the degree of reversibility of induced lesions can be related to variations in the metabolic network patterns. This approach has wider application in assessment of system level dysfunction in animal or human studies from noninvasive measurements.  相似文献   

5.
The combined method of LC-MS/MS is increasingly being used to explore differences in the proteomic composition of complex biological systems. The reliability and utility of such comparative protein expression profiling studies is critically dependent on an accurate and rigorous assessment of quantitative changes in the relative abundance of the myriad of proteins typically present in a biological sample such as blood or tissue. In this review, we provide an overview of key statistical and computational issues relevant to bottom-up shotgun global proteomic analysis, with an emphasis on methods that can be applied to improve the dependability of biological inferences drawn from large proteomic datasets. Focusing on a start-to-finish approach, we address the following topics: 1) low-level data processing steps, such as formation of a data matrix, filtering, and baseline subtraction to minimize noise, 2) mid-level processing steps, such as data normalization, alignment in time, peak detection, peak quantification, peak matching, and error models, to facilitate profile comparisons; and, 3) high-level processing steps such as sample classification and biomarker discovery, and related topics such as significance testing, multiple testing, and choice of feature space. We report on approaches that have recently been developed for these steps, discussing their merits and limitations, and propose areas deserving of further research.  相似文献   

6.
Biological systems can now be understood in comprehensive and quantitative detail using systems biology approaches. Putative genome-scale models can be built rapidly based upon biological inventories and strategic system-wide molecular measurements. Current models combine statistical associations, causative abstractions, and known molecular mechanisms to explain and predict quantitative and complex phenotypes. This top-down 'reverse engineering' approach generates useful organism-scale models despite noise and incompleteness in data and knowledge. Here we review and discuss the reverse engineering of biological systems using top-down data-driven approaches, in order to improve discovery, hypothesis generation, and the inference of biological properties.  相似文献   

7.
Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.  相似文献   

8.
9.
The explosion of biomedical data, both on the genomic and proteomic side as well as clinical data, will require complex integration and analysis to provide new molecular variables to better understand the molecular basis of phenotype. Currently, much data exist in silos and is not analyzed in frameworks where all data are brought to bear in the development of biomarkers and novel functional targets. This is beginning to change. Network biology approaches, which emphasize the interactions between genes, proteins and metabolites provide a framework for data integration such that genome, proteome, metabolome and other -omics data can be jointly analyzed to understand and predict disease phenotypes. In this review, recent advances in network biology approaches and results are identified. A common theme is the potential for network analysis to provide multiplexed and functionally connected biomarkers for analyzing the molecular basis of disease, thus changing our approaches to analyzing and modeling genome- and proteome-wide data.  相似文献   

10.
The development and successful application of high-throughput technologies are transforming biological research. The large quantities of data being generated by these technologies have led to the emergence of systems biology, which emphasizes large-scale, parallel characterization of biological systems and integration of fragmentary information into a coherent whole. Complementing the reductionist approach that has dominated biology for the last century, mathematical modeling is becoming a powerful tool to achieve an integrated understanding of complex biological systems and to guide experimental efforts of engineering biological systems for practical applications. Here I give an overview of current mainstream approaches in modeling biological systems, highlight specific applications of modeling in various settings, and point out future research opportunities and challenges.  相似文献   

11.
Understanding how proteins and their complex interaction networks convert the genomic information into a dynamic living organism is a fundamental challenge in biological sciences. As an important step towards understanding the systems biology of a complex eukaryote, we cataloged 63% of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis-driven experimentation feedback loops, whereby data collection is guided by statistical analysis of prior data. We show that high-quality proteomics data provide crucial information to amend genome annotation and to confirm many predicted gene models. We also present experimentally identified proteotypic peptides matching approximately 50% of D. melanogaster gene models. This library of proteotypic peptides should enable fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.  相似文献   

12.
13.
系统生物学——生命科学的新领域   总被引:14,自引:0,他引:14  
系统生物学是继基因组学、蛋白质组学之后一门新兴的生物学交叉学科,代表21世纪生物学的未来.最近,系统生物学研究机构纷纷成立.在研究上,了解一个复杂的生物系统需要整合实验和计算方法.基因组学和蛋白质组学中的高通量方法为系统生物学发展提供了大量的数据.计算生物学通过数据处理、模型构建和理论分析,成为系统生物学发展的一个必不可缺、强有力的工具.在应用上,系统生物学代表新一代医药开发和疾病防治的方向.  相似文献   

14.
Although theoretical systems analysis has been available for over half a century, the recent advent of omic high-throughput analytical platforms along with the integration of individual tools and technologies has given rise to the field of modern systems biology. Coupled with information technology, bioinformatics, knowledge management and powerful mathematical models, systems biology has opened up new vistas in our understanding of complex biological systems. Currently there are two distinct approaches that include the inductively driven computational systems biology (bottom-up approach) and the deductive data-driven top-down analysis. Such approaches offer enormous potential in the elucidation of disease as well as defining key pathways and networks involved in optimal human health and nutrition. The tools and technologies now available in systems biology analyses offer exciting opportunities to develop the emerging areas of personalized medicine and individual nutritional profiling.  相似文献   

15.
Systems biology is creating a context for interpreting the vast amounts of genomic and proteomic data being produced by pharmaceutical companies in support of drug development. While major data collection efforts capitalize on technical advances in miniaturization and automation and represent an industrialization of existing laboratory research, the transition from mental models to predictive computer simulations is setting the pace for advances in this field. This article addresses current approaches to the mathematical modeling of biological systems and assesses the potential impact of predictive biosimulation on drug discovery and development.  相似文献   

16.
Pharmacokinetic (PK) and pharmacodynamic (PD) models seek to describe the temporal pattern of drug exposures and their associated pharmacological effects produced at micro- and macro-scales of organization. Antibody-based drugs have been developed for a large variety of diseases, with effects exhibited through a comprehensive range of mechanisms of action. Mechanism-based PK/PD and systems pharmacology models can play a major role in elucidating and integrating complex antibody pharmacological properties, such as nonlinear disposition and dynamical intracellular signaling pathways triggered by ligation to their cognate targets. Such complexities can be addressed through the use of robust computational modeling techniques that have proven powerful tools for pragmatic characterization of experimental data and for theoretical exploration of antibody efficacy and adverse effects. The primary objectives of such multi-scale mathematical models are to generate and test competing hypotheses and to predict clinical outcomes. In this review, relevant systems pharmacology and enhanced PD (ePD) models that are used as predictive tools for antibody-based drug action are reported. Their common conceptual features are highlighted, along with approaches used for modeling preclinical and clinically available data. Key examples illustrate how systems pharmacology and ePD models codify the interplay among complex biology, drug concentrations, and pharmacological effects. New hybrid modeling concepts that bridge cutting-edge systems pharmacology models with established PK/ePD models will be needed to anticipate antibody effects on disease in subpopulations and individual patients.  相似文献   

17.
18.
计算系统生物学是一个多学科交叉的新兴领域,旨在通过整合海量数据建立其生物系统相互作用的复杂网络。数据的整合和模型的建立需要发展合适的数学方法和软件工具,这也是计算系统生物学的主要任务。生物系统模型有助于从整体上理解生物体的内在功能和特性。同时,生物网络模型在药物研发中的应用也越来越受到制药企业以及新药研发机构的重视,如用于特异性药物作用靶点的预测和药物毒性评估等。该文简要介绍计算系统生物学的常见网络和计算模型,以及建立模型所用的研究方法,并阐述其在建模和分析中的作用及面临的问题和挑战。  相似文献   

19.
Historically, many mass spectrometry–based proteomic studies have aimed at compiling an inventory of protein compounds present in a biological sample, with the long-term objective of creating a proteome map of a species. However, to answer fundamental questions about the behavior of biological systems at the protein level, accurate and unbiased quantitative data are required in addition to a list of all protein components. Fueled by advances in mass spectrometry, the proteomics field has thus recently shifted focus toward the reproducible quantification of proteins across a large number of biological samples. This provides the foundation to move away from pure enumeration of identified proteins toward quantitative matrices of many proteins measured across multiple samples. It is argued here that data matrices consisting of highly reproducible, quantitative, and unbiased proteomic measurements across a high number of conditions, referred to here as quantitative proteotype maps, will become the fundamental currency in the field and provide the starting point for downstream biological analysis. Such proteotype data matrices, for example, are generated by the measurement of large patient cohorts, time series, or multiple experimental perturbations. They are expected to have a large effect on systems biology and personalized medicine approaches that investigate the dynamic behavior of biological systems across multiple perturbations, time points, and individuals.  相似文献   

20.
Our understanding of biological processes as well as human diseases has improved greatly thanks to studies on model organisms such as yeast. The power of scientific approaches with yeast lies in its relatively simple genome, its facile classical and molecular genetics, as well as the evolutionary conservation of many basic biological mechanisms. However, even in this simple model organism, systems biology studies, especially proteomic studies had been an intimidating task. During the past decade, powerful high-throughput technologies in proteomic research have been developed for yeast including protein microarray technology. The protein microarray technology allows the interrogation of protein–protein, protein–DNA, protein–small molecule interaction networks as well as post-translational modification networks in a large-scale, high-throughput manner. With this technology, many groundbreaking findings have been established in studies with the budding yeast Saccharomyces cerevisiae, most of which could have been unachievable with traditional approaches. Discovery of these networks has profound impact on explicating biological processes with a proteomic point of view, which may lead to a better understanding of normal biological phenomena as well as various human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号