首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous recombination, the exchange of strands between different DNA molecules, is essential for proper maintenance and accurate duplication of the genome. Using magnetic tweezers, we monitor RecA-driven homologous recombination of individual DNA molecules in real time. We resolve several key aspects of DNA structure during and after strand exchange. Changes in DNA length and twist yield helical parameters for the protein-bound three-stranded structure in conditions in which ATP was not hydrolyzed. When strand exchange was completed under ATP hydrolysis conditions that allow protein dissociation, a "D wrap" structure formed. During homologous recombination, strand invasion at one end and RecA dissociation at the other end occurred at the same rate, and our single-molecule analysis indicated that a region of only about 80 bp is actively involved in the synapsis at any time during the entire reaction involving a long ( approximately 1 kb) region of homology.  相似文献   

2.
W Rosselli  A Stasiak 《The EMBO journal》1991,10(13):4391-4396
The role of ATP hydrolysis during the RecA-mediated recombination reaction is addressed in this paper. Recent studies indicated that the RecA-promoted DNA strand exchange between completely homologous double- and single-stranded DNA can be very efficient in the absence of ATP hydrolysis. In this work we demonstrate that the energy derived from the ATP hydrolysis is strictly needed to drive the DNA strand exchange through the regions where the interacting DNA molecules are not in a homologous register. Therefore, in addition to the role of the ATP hydrolysis in promoting the dissociation of RecA from the products of the recombination reaction, as described earlier, ATP hydrolysis also plays a crucial role in the actual process of strand exchange, provided that the lack of homologous register obstructs the process of branch migration.  相似文献   

3.
B C Schutte  M M Cox 《Biochemistry》1987,26(18):5616-5625
As a first step in DNA strand exchange, recA protein forms a filamentous complex on single-stranded DNA (ssDNA), which contains stoichiometric (one recA monomer per four nucleotides) amounts of recA protein. recA protein monomers within this complex hydrolyze ATP with a turnover number of 25 min-1. Upon introduction of linear homologous duplex DNA to initiate strand exchange, this rate of ATP hydrolysis drops by 33%. The decrease in rate is complete in less than 2 min, and the rate of ATP hydrolysis then remains constant during and subsequent to the strand exchange reaction. This drop is completely dependent upon homology in the duplex DNA. In addition, the magnitude of the drop is linearly dependent upon the length of the homologous region in the linear duplex DNA. Linear DNA substrates in which pairing is topologically restricted to a paranemic joint also follow this relationship. Taken together, these properties imply that all of the available homology in the incoming duplex DNA is detected very early in the DNA strand exchange reaction, with the linear duplex DNA paired paranemically with the homologous ssDNA in the complex throughout its length. The results indicate that paranemic joints can extend over thousands of base pairs. We note elsewhere [Pugh, B. F., & Cox, M. M. (1987b) J. Biol. Chem. 262, 1337-1343] that this duplex acquires resistance to digestion by DNase with a much slower time course (30 min), which parallels the progress of strand exchange. Together these results imply that the duplex DNA is paired with the ssDNA but remains outside the nucleoprotein filament. Finally, the results also support the notion that ATP hydrolysis occurs throughout the recA nucleoprotein filament.  相似文献   

4.
Bacterial RecA protein is a prototype of ATP-dependent homologous recombinases found ubiquitously from bacteriophages up to human beings. When RecA filament is forming on single-stranded DNA in the presence of ATP, it initiates the strand exchange reaction with homologous double-stranded DNA. Among three phases of the reaction (the search for homology, the three-stranded structure annealing in conjunction with the switch of pairing, and the strand displacement) the first one is the most enigmatic and least studied. As commonly recognized, this phase is directed by a special (stretched) filament structure and does not required any additional consumption of energy in ATP hydrolysis. The novel approaches in the study of strand exchange reaction, using short oligonucleotides as DNA substrates and sensitive methods for a real-time monitoring of the reaction suggest that all three phases of the reaction depend on the ATP hydrolysis.  相似文献   

5.
We have characterized an enzymatic activity from human cell nuclei which is capable of catalyzing strand exchange between homologous DNA sequences. The strand exchange activity was Mg2+ dependent and required ATP hydrolysis. In addition, it was capable of promoting reannealing of homologous DNA sequences and could form nucleoprotein networks in a fashion reminiscent of purified bacterial RecA protein. Using an in vitro recombination assay, we also showed that the strand exchange activity was biologically important. The factor(s) responsible for the activity has been partially purified.  相似文献   

6.
Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/ΔC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catalyzed by this mutant protein nearly normally from pH 6 to 8.5. It will also form filaments on DNA and promote DNA pairing. However, below pH 7.3, ATP hydrolysis is completely uncoupled from extended DNA strand exchange. The products of extended DNA strand exchange do not form. At the lower pH values, disassembly of RecA E38K/ΔC17 filaments is strongly suppressed, even when homologous DNAs are paired and available for extended DNA strand exchange. Disassembly of RecA E38K/ΔC17 filaments improves at pH 8.5, whereas complete DNA strand exchange is also restored. Under these sets of conditions, a tight correlation between filament disassembly and completion of DNA strand exchange is observed. This correlation provides evidence that RecA filament disassembly plays a major role in, and may be required for, DNA strand exchange. A requirement for RecA filament disassembly in DNA strand exchange has a variety of ramifications for the current models linking ATP hydrolysis to DNA strand exchange.  相似文献   

7.
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski et al., 1990), calling into question the role of ATP hydrolysis in this reaction. We demonstrate here that the ATP gamma S-mediated process is restricted to homologous strand exchange reactions involving three strands. In four-strand exchanges between a gapped duplex circle and a second linear duplex, joint molecules are formed in the gap but are not extended into the four-strand region when ATP gamma S is present. This result provides evidence that one function of ATP hydrolysis in the recA system is to facilitate reciprocal DNA strand exchange involving four strands. Implications with respect to the role of four-stranded pairing intermediates and the mechanistic relationship between three- and four-strand exchange reactions are discussed.  相似文献   

8.
The bacterial RecA protein and the homologous Rad51 protein in eukaryotes both bind to single-stranded DNA (ssDNA), align it with a homologous duplex, and promote an extensive strand exchange between them. Both reactions have properties, including a tolerance of base analog substitutions that tend to eliminate major groove hydrogen bonding potential, that suggest a common molecular process underlies the DNA strand exchange promoted by RecA and Rad51. However, optimal conditions for the DNA pairing and DNA strand exchange reactions promoted by the RecA and Rad51 proteins in vitro are substantially different. When conditions are optimized independently for both proteins, RecA promotes DNA pairing reactions with short oligonucleotides at a faster rate than Rad51. For both proteins, conditions that improve DNA pairing can inhibit extensive DNA strand exchange reactions in the absence of ATP hydrolysis. Extensive strand exchange requires a spooling of duplex DNA into a recombinase-ssDNA complex, a process that can be halted by any interaction elsewhere on the same duplex that restricts free rotation of the duplex and/or complex, I.e. the reaction can get stuck. Optimization of an extensive DNA strand exchange without ATP hydrolysis requires conditions that decrease nonproductive interactions of recombinase-ssDNA complexes with the duplex DNA substrate.  相似文献   

9.
Bacterial RecA is a prototype of ATP-dependent homologous recombinases, found ubiquitously from bacteriophages to humans. The RecA filament formed on single-stranded DNA in the presence of ATP initiates a strand exchange reaction with homologous double-stranded DNA. Of the three stages of this reaction (search for homology, annealing of a triple-stranded structure accompanied by a switch of pairing, and displacement of the third strand), the first stage is the most enigmatic and least studied. As is generally accepted, this stage is directed by a special (extended) RecA filament structure and does not require any additional energy from ATP hydrolysis. The new approaches to the study of the strand exchange reaction with short oligonucleotides as DNA substrates and sensitive methods for a real-time monitoring of this reaction suggest that all three stages depend on ATP hydrolysis.  相似文献   

10.
Archaeal RadA/Rad51 are close homologues of eukaryal Rad51/DMC1. Such recombinases, as well as their bacterial RecA orthologues, form helical nucleoprotein filaments in which a hallmark strand exchange reaction occurs between homologous DNA substrates. Our recent ATPase and structure studies on RadA recombinase from Methanococcus voltae have suggested that not only magnesium but also potassium ions are absorbed at the ATPase center. Potassium, but not sodium, stimulates the ATP hydrolysis reaction with an apparent dissociation constant of approximately 40 mM. The minimal inhibitory effect by 40 mM NaCl further suggests that the protein does not have adequate affinity for sodium. The wild-type protein's strand exchange activity is also stimulated by potassium with an apparent dissociation constant of approximately 35 mM. We made site-directed mutations at the potassium-contacting residues Glu151 and Asp302. The mutant proteins are expectedly defective in promoting ATP hydrolysis. Similar potassium preference in strand exchange is observed for the E151D and E151K proteins. The D302K protein, however, shows comparable strand exchange efficiencies in the presence of either potassium or sodium. Crystallized E151D filaments reveal a potassium-dependent conformational change similar to what has previously been observed with the wild-type protein. We interpret these data as suggesting that both ATP hydrolysis and DNA strand exchange requires accessibility to an "active" conformation similar to the crystallized ATPase-active form in the presence of ATP, Mg2+ and K+.  相似文献   

11.
DMC1 and RAD51 are conserved recombinases that catalyze homologous recombination. DMC1 and RAD51 share similar properties in DNA binding, DNA-stimulated ATP hydrolysis, and catalysis of homologous DNA strand exchange. A large body of evidence indicates that attenuation of ATP hydrolysis leads to stabilization of the RAD51-ssDNA presynaptic filament and enhancement of DNA strand exchange. However, the functional relationship of ATPase activity, presynaptic filament stability, and DMC1-mediated homologous DNA strand exchange has remained largely unexplored. To address this important question, we have constructed several mutant variants of human DMC1 and characterized them biochemically to gain mechanistic insights. Two mutations, K132R and D223N, that change key residues in the Walker A and B nucleotide-binding motifs ablate ATP binding and render DMC1 inactive. On the other hand, the nucleotide-binding cap D317K mutant binds ATP normally but shows significantly attenuated ATPase activity and, accordingly, forms a highly stable presynaptic filament. Surprisingly, unlike RAD51, presynaptic filament stabilization achieved via ATP hydrolysis attenuation does not lead to any enhancement of DMC1-catalyzed homologous DNA pairing and strand exchange. This conclusion is further supported by examining wild-type DMC1 with non-hydrolyzable ATP analogues. Thus, our results reveal an important mechanistic difference between RAD51 and DMC1.  相似文献   

12.
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma S-mediated reaction can go to completion when the duplex DNA substrate is only 1.3 kilobase pairs in length. The ATP gamma S-mediated reaction, however, is completely blocked by a 52-base pair heterologous insertion in either DNA substrate. This same barrier is readily bypassed when ATP replaces ATP gamma S. This indicates that at least one function of recA-mediated ATP hydrolysis is to bypass structural barriers in one or both DNA substrates during strand exchange. This suggests that ATP hydrolysis is directly coupled to the branch migration phase of strand exchange, not to promote strand exchange between homologous DNA substrates during recombination, but instead to facilitate the bypass of structural barriers likely to be encountered during recombinational DNA repair.  相似文献   

13.
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.  相似文献   

14.
The radA gene predicted to be responsible for homologous recombination in a hyperthermophilic archaeon, Desulfurococcus amylolyticus, was cloned, sequenced, and overexpressed in Escherichia coli cells. The deduced amino acid sequence of the gene product, RadA, was more similar to the human Rad51 protein (65% homology) than to the E. coli RecA protein (35%). A highly purified RadA protein was shown to exclusively catalyze single-stranded DNA-dependent ATP hydrolysis, which monitored presynaptic recombinational complex formation, at temperatures above 65 degrees C (catalytic rate constant of 1.2 to 2.5 min(-1) at 80 to 95 degrees C). The RadA protein alone efficiently promoted the strand exchange reaction at the range of temperatures from 80 to 90 degrees C, i.e., at temperatures approaching the melting point of DNA. It is noteworthy that both ATP hydrolysis and strand exchange are very efficient at temperatures optimal for host cell growth (90 to 92 degrees C).  相似文献   

15.
The nucleoprotein filament formed by Rad51 polymerization on single-stranded DNA is essential for homologous pairing and strand exchange. ATP binding is required for Rad51 nucleoprotein filament formation and strand exchange, but ATP hydrolysis is not required for these functions in vitro. Previous studies have shown that a yeast strain expressing the rad51-K191R allele is sensitive to ionizing radiation, suggesting an important role for ATP hydrolysis in vivo. The recruitment of Rad51-K191R to double-strand breaks is defective in vivo, and this phenotype can be suppressed by elimination of the Srs2 helicase, an antagonist of Rad51 filament formation. The phenotype of the rad51-K191R strain is also suppressed by overexpression of Rad54. In vitro, the Rad51-K191R protein exhibits a slight decrease in binding to DNA, consistent with the defect in presynaptic filament formation. However, the rad51-K191R mutation is dominant in heterozygous diploids, indicating that the defect is not due simply to reduced affinity for DNA. We suggest the Rad51-K191R protein either forms an altered filament or is defective in turnover, resulting in a reduced pool of free protein available for DNA binding.  相似文献   

16.
Rad51 and disrupted meiotic cDNA1 (Dmc1) are the two eukaryotic DNA recombinases that participate in homology search and strand exchange reactions during homologous recombination mediated DNA repair. Rad51 expresses in both mitotic and meiotic tissues whereas Dmc1 is confined to meiosis. DNA binding and pairing activities of Oryza sativa disrupted meiotic cDNA1 (OsDmc1) from rice have been reported earlier. In the present study, DNA renaturation and strand exchange activities of OsDmc1 have been studied, in real time and without the steps of deproteinization, using fluorescence resonance energy transfer (FRET). The extent as well as the rate of renaturation is the highest in conditions that contain ATP, but significantly less when ATP is replaced by slowly hydrolysable analogues of ATP, namely adenosine 5'-(beta,gamma-imido) triphosphate (AMP-PNP) or adenosine 5'-O-(3-thio triphosphate) (ATP-gamma-S), where the former was substantially poorer than the latter in facilitating the renaturation function. FRET assay results also revealed OsDmc1 protein concentration dependent strand exchange function, where the activity was the fastest in the presence of ATP, whereas in the absence of a nucleotide cofactor it was several fold ( approximately 15-fold) slower. Interestingly, strand exchange, in reactions where ATP was replaced with AMP-PNP or ATP-gamma-S, was somewhat slower than that of even minus nucleotide cofactor control. Notwithstanding the slow rates, the reactions with no nucleotide cofactor or with ATP-analogues did reach the same steady state level as seen in ATP reaction. FRET changes were unaffected by the steps of deproteinization following OsDmc1 reaction, suggesting that the assay results reflected stable events involving exchanges of homologous DNA strands. All these results, put together, suggest that OsDmc1 catalyses homologous renaturation as well as strand exchange events where ATP hydrolysis seems to critically decide the rates of the reaction system. These studies open up new facets of a plant recombinase function in relation to the role of ATP hydrolysis.  相似文献   

17.
During meiosis, the RAD51 recombinase and its meiosis-specific homolog DMC1 mediate DNA strand exchange between homologous chromosomes. The proteins form a right-handed nucleoprotein complex on ssDNA called the presynaptic filament. In an ATP-dependent manner, the presynaptic filament searches for homology to form a physical connection with the homologous chromosome. We constructed two variants of hDMC1 altering the conserved lysine residue of the Walker A motif to arginine (hDMC1K132R) or alanine (hDMC1K132A). The hDMC1 variants were expressed in Escherichia coli and purified to near homogeneity. Both hDMC1K132R and hDMC1K132A variants were devoid of ATP hydrolysis. The hDMC1K132R variant was attenuated for ATP binding that was partially restored by the addition of either ssDNA or calcium. The hDMC1K132R variant was partially capable of homologous DNA pairing and strand exchange in the presence of calcium and protecting DNA from a nuclease, while the hDMC1K132A variant was inactive. These results suggest that the conserved lysine of the Walker A motif in hDMC1 plays a key role in ATP binding. Furthermore, the binding of calcium and ssDNA promotes a conformational change in the ATP binding pocket of hDMC1 that promotes ATP binding. Our results provide evidence that the conserved lysine in the Walker A motif of hDMC1 is critical for ATP binding which is required for presynaptic filament formation.  相似文献   

18.
RecA protein in bacteria and its eukaryotic homolog Rad51 protein are responsible for initiation of strand exchange between homologous DNA molecules. This process is crucial for homologous recombination, the repair of certain types of DNA damage and for the reinitiation of DNA replication on collapsed replication forks. We show here, using two different types of in vitro assays, that in the absence of ATP hydrolysis RecA-mediated strand exchange traverses small substitutional heterologies between the interacting DNAs, whereas small deletions or insertions block the ongoing strand exchange. We discuss evolutionary implications of RecA selectivity against insertions and deletions and propose a molecular mechanism by which RecA can exert this selectivity.  相似文献   

19.
Rad51 and Rad54 proteins play a key role in homologous recombination in eukaryotes. Recently, we reported that Ca2+ is required in vitro for human Rad51 protein to form an active nucleoprotein filament that is important for the search of homologous DNA and for DNA strand exchange, two critical steps of homologous recombination. Here we find that Ca2+ is also required for hRad54 protein to effectively stimulate DNA strand exchange activity of hRad51 protein. This finding identifies Ca2+ as a universal cofactor of DNA strand exchange promoted by mammalian homologous recombination proteins in vitro. We further investigated the hRad54-dependent stimulation of DNA strand exchange. The mechanism of stimulation appeared to include specific interaction of hRad54 protein with the hRad51 nucleoprotein filament. Our results show that hRad54 protein significantly stimulates homology-independent coaggregation of dsDNA with the filament, which represents an essential step of the search for homologous DNA. The results obtained indicate that hRad54 protein serves as a dsDNA gateway for the hRad51-ssDNA filament, promoting binding and an ATP hydrolysis-dependent translocation of dsDNA during the search for homologous sequences.  相似文献   

20.
In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog) and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog)–mediated homologous recombination (HR) and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA), which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA) precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1–mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号