首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune thyroiditis (EAT), induced by thuroglobulin (Tg) and adjuvant, is major histocompatibility complex-controlled and dependent on Tg-reactive T cells, but the immunopathogenic T-cell epitopes on Tg remain mostly undefined. We report here the thyroiditogenicity of a novel rat Tg peptide (TgP2; corresponding to human Tg amino acids 2695–2713), identified by algorithms as a site of putative T-cell epitope(s). TgP2 causes EAT in SJL (H-2 s) but not in C3H or B10.BR (H-2 k), BALB/c (H-2 d), and B10 (H-2 b) mice. This reveals a new genetic pattern of EAT susceptibility, since H-2 k mice are known to be high reponders (susceptible) after Tg challenge. Following in vivo priming with TgP2, T cells from only SJL mice proliferated significantly and consistently to TgP2 in vitro, whereas TgP2-specific IgG was observed in all strains tested. Adoptive transfer of TgP2-primed SJL lymph node cells to naive syngeneic recipients induced a pronounced mononuclear infiltration of the thyroid, which was more extensive than that observed after direct peptide challenge. TgP2 is non-immunodominant, since priming of SJL mice with rTg did not consistently elicit T-cell responses to TgP2 in vitro and a TgP2-specific T-cell hybridoma did not respond to antigen presenting cells pulsed with rTg. The data support the notion that Tg epitopes need not be either iodinated or immunodominant in order to cause severe thyroiditis and that the genetic pattern of the disease they induce can be distinct from that of Tg-mediated EAT. Correspondence to: G. Carayanniotis.  相似文献   

2.
Experimental autoimmune thyroiditis (EAT) is a T cell-mediated disease that can be induced in mice after challenge with thyroglobulin (Tg) or Tg peptides. To date, five pathogenic Tg peptides have been identified, four of which are clustered toward the C-terminal end. Because susceptibility to EAT is under control of H-2A(k) genes, we have used an algorithm-based approach to identify A(k)-binding peptides with pathogenic potential within mouse Tg. Eight candidate synthetic peptides, varying in size from 9 to 15 aa, were tested and five of those (p306, p1579, p1826, p2102, and p2596) were found to induce EAT in CBA/J (H-2(k)) mice either after direct challenge with peptide in adjuvant or by adoptive transfer of peptide-sensitized lymph node cells (LNCs) into naive hosts. These pathogenic peptides were immunogenic at the T cell level, eliciting specific LNC proliferative responses and IL-2 and/or IFN-gamma secretion in recall assays in vitro, but contained nondominant epitopes. All immunogenic peptides were confirmed as A(k) binders because peptide-specific LNC proliferation was blocked by an A(k)-specific mAb, but not by a control mAb. Peptide-specific serum IgG was induced only by p2102 and p2596, but these Abs did not bind to intact mouse Tg. This study reaffirms the predictive value of A(k)-binding motifs in epitope mapping and doubles the number of known pathogenic T cell determinants in Tg that are now found scattered throughout the length of this large autoantigen. This knowledge may contribute toward our understanding of the pathogenesis of autoimmune thyroiditis.  相似文献   

3.
Thyroglobulin (Tg)-specific T cells are important in the induction of experimental autoimmune thyroiditis (EAT), but the nature and the number of the Tg T cell epitopes involved in the disease process are unknown. Through the use of computerized algorithms that search for putative T cell epitopes, a 17-mer peptide (TgP1) was identified within the known portion of the rat Tg sequence (corresponding to amino acids 2495 to 2511 of the human Tg sequence) that induced strong mononuclear cell infiltration of the thyroid in classic EAT-susceptible murine strains such as SJL, C3H, and B10.BR and low or undetectable infiltration in EAT-resistant strains such as BALB/c and B10. TgP1 appears to be phylogenetically conserved since it is completely homologous to its bovine counterpart and differs at a single amino acid position from its human analogue. After priming with TgP1 in vivo, significant proliferative T cell responses to TgP1 in vitro were observed only with lymphocytes from susceptible (high responder) strains, thus correlating proliferative capacity with EAT induction. TgP1-primed T cells did not respond to intact mouse Tg (MTg) or rat Tg in vitro and, conversely, T cells primed in vivo with MTg or rat Tg did not respond to TgP1 in culture, suggesting that TgP1 is comprised of non-immunodominant T cell determinants. TgP1 was defined as a serologically nonimmunodominant epitope as well, since in vivo priming of all strains with MTg led to strong MTg-specific IgG responses but no TgP1-specific responses in ELISA assays. This was not due to lack of immunogenic B cell determinants on TgP1, however, because peptide challenge of EAT-susceptible strains elicited TgP1-specific IgG that also cross-reacted with MTg and rat, human, bovine, and porcine Tg. The data demonstrate that TgP1 delineates nonimmunodominant but highly immunogenic determinants at both the T and B cell level, which may play an important role in the development of autoimmune thyroiditis.  相似文献   

4.
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.  相似文献   

5.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

6.
Increased iodine intake has been associated with the development of experimental autoimmune thyroiditis (EAT), but the biological basis for this association remains poorly understood. One hypothesis has been that enhanced incorporation of iodine in thyroglobulin (Tg) promotes the generation of pathogenic T cell determinants. In this study we sought to test this by using the pathogenic nondominant A(s)-binding Tg peptides p2495 and p2694 as model Ags. SJL mice challenged with highly iodinated Tg (I-Tg) developed EAT of higher severity than Tg-primed controls, and lymph node cells (LNC) from I-Tg-primed hosts showed a higher proliferation in response to I-Tg in vitro than Tg-primed LNC reacting to Tg. Interestingly, I-Tg-primed LNC proliferated strongly in vitro against p2495, but not p2694, indicating efficient and selective priming with p2495 following processing of I-Tg in vivo. Tg-primed LNC did not respond to either peptide. Similarly, the p2495-specific, IL-2-secreting T cell hybridoma clone 5E8 was activated when I-Tg-pulsed, but not Tg-pulsed, splenocytes were used as APC, whereas the p2694-specific T cell hybridoma clone 6E10 remained unresponsive to splenic APC pulsed with Tg or I-Tg. The selective in vitro generation of p2495 was observed in macrophages or dendritic cells, but not in B cells, suggesting differential processing of I-Tg among various APC. These data demonstrate that enhanced iodination of Tg facilitates the selective processing and presentation of a cryptic pathogenic peptide in vivo or in vitro and suggest a mechanism that can at least in part account for the association of high iodine intake and the development of EAT.  相似文献   

7.
Genes of the MHC show the strongest genetic association with multiple sclerosis (MS), but the underlying mechanisms have remained unresolved. In this study, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401, contribute to autoimmune CNS demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon back-crossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific type B T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific type B T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and type B T cells can escape the induction of T cell tolerance and may promote MS.  相似文献   

8.
Recently we reported on a novel H2E transgenic, IA-negative model of experimental autoimmune thyroiditis (EAT) that excludes reactivity to self in its susceptibility pattern to heterologous thyroglobulin (Tg). In conventional, susceptible mouse strains, EAT is inducible with both homologous and heterologous Tg; e.g., human (h)Tg shares conserved thyroiditogenic epitopes with mouse (m)Tg. However, when an H2Ea(k) transgene is introduced into class II-negative B10.Ab(0) mice, which express neither surface IA (mutant Abeta-chain) nor surface IE (nonfunctional Ea gene), the resultant H2E(b) molecules are permissive for EAT induction by hTg, but not self mTg. Also, the hTg-primed cells do not cross-react with mTg. To explore this unique capacity of E+B10.Ab(0) mice to distinguish self from nonself Tg, we have developed T cell lines to examine the T cell receptor repertoire and observed a consistent Vbeta8+ component after repeated hTg stimulation. Enrichment and activation of Vbeta8+ T cells by either superantigen staphylococcal entertoxin B or anti-Vbeta8 in vitro enabled thyroiditis transfer to untreated A-E+ recipients, similar to hTg activation. Vbeta8+ T cells isolated by FACS from hTg-immunized mice also proliferated to hTg in vitro. These studies support the contribution of Vbeta8 genes to the pathogenicity of hTg in this H2A-E+ transgenic model.  相似文献   

9.
Mechanistic and therapeutic insights in autoimmune diabetes would benefit from a more complete identification of relevant autoantigens. BDC2.5 TCR transgenic NOD mice express transgenes for TCR Vα1 and Vβ4 chains from the highly diabetogenic BDC2.5 CD4(+) T cell clone, which recognizes pancreatic β cell membrane Ags presented by NOD I-A(g7) MHC class II molecules. The antigenic epitope of BDC2.5 TCR is absent in β cells that do not express chromogranin A (ChgA) protein. However, characterization of the BDC2.5 epitope in ChgA has given inconclusive results. We have now identified a ChgA29-42 peptide within vasostatin-1, an N-terminal natural derivative of ChgA as the BDC2.5 TCR epitope. Having the necessary motif for binding to I-A(g7), it activates BDC2.5 T cells and induces an IFN-γ response. More importantly, adoptive transfer of naive BDC2.5 splenocytes activated with ChgA29-42 peptide transferred diabetes into NOD/SCID mice.  相似文献   

10.
We recently described a novel H2E class II-transgenic model (A(-)E(+)) of experimental autoimmune thyroiditis (EAT) that permits disease induction with heterologous thyroglobulin (Tg), but unlike conventional susceptible strains, precludes self-reactivity to autologous mouse Tg. In transgenic E(+)B10 (A(+)E(+)) mice, the presence of endogenous H2A genes is protective against H2E-mediated thyroiditis, inhibiting EAT development. The suppressive effect of H2A genes on H2E-mediated thyroiditis mirrors previous reports of H2E suppression on H2A-mediated autoimmune diseases, including EAT. The mechanism of the reciprocal-suppressive effect between class II genes is unclear, although the involvement of regulatory T cells has been proposed. We have recently reported that CD4(+)CD25(+) regulatory T cells mediate peripheral tolerance induced with mouse Tg in CBA mice. To determine whether these cells play a role in our E(+)-transgenic model, we first confirmed the existence of CD4(+)CD25(+) T cells regulating thyroiditis in E(+)B10.Ab(0) (A(-)E(+)) and B10 (A(+)E(-)) mice by i.v. administration of CD25 mAb before EAT induction. The depletion of CD4(+)CD25(+) T cells enhanced thyroiditis induction in the context of either H2E or H2A. Moreover, reconstitution of CD4(+)CD25(+) T cells from naive B10 mice restored resistance to EAT. E(+)B10 (A(+)E(+)) mice were also depleted of CD4(+)CD25(+) T cells before the challenge to determine their role in thyroiditis in the presence of both H2A and H2E genes. Depletion of CD4(+)CD25(+) regulatory T cells offset the suppression of H2E-mediated thyroiditis by H2A. Thus, these regulatory T cells may be involved in the reciprocal-suppressive effect between class II genes.  相似文献   

11.

Background

CD90 (Thy-1) is a small glycoprotein that is particularly abundant on the surface of mouse thymocytes and peripheral T cells, and is often used as a marker in adoptive transfer experiments to distinguish donor and recipient T cells with different CD90 subtypes. We have performed adoptive transfer experiments with T cell receptor transgenic (TCR Tg) mice to study the impaired CD8 T cell response with aging.

Findings

After stimulation with a CD8 T cell epitope, HA518-524, the response of TCR Tg CD8 T cells from aged mice was decreased compared to the response of TCR Tg T cells from young mice. CD90 expression was also substantially decreased on the TCR Tg CD8 T cells of aged mice. However, the responses of CD90hi and CD90low CD8 T cells of the aged mice were similar in both early activation and proliferation, demonstrating that the impaired Tg T cell response with aging is not associated with the altered CD90 expression on CD8 T cells.

Conclusions

The impaired Tg CD8 T cell response in aged mice is not due to age-associated changes in CD90 expression on Tg CD8 T cells.
  相似文献   

12.
T cells from genetically susceptible mice developing experimental autoimmune thyroiditis (EAT) proliferate in response to restimulation with mouse thyroglobulin (MTg) in vitro. The in vitro-activated cells adoptively transfer EAT as well as differentiate into cells cytotoxic for syngeneic thyroid monolayers. To examine the kinetics of T cell subset infiltration and distribution in situ after adoptive transfer, we applied the avidin-biotin-peroxidase labeling technique to thyroid sections, utilizing rat monoclonal antibodies followed by a biotinylated rabbit anti-rat antibody. Female CBA donor mice were immunized with MTg and lipopolysaccharide. Their spleen cells were obtained 7 days later, cultured with MTg, and transferred into recipient mice. The thyroids were removed on Days 7, 10, and 14 after transfer and serially sectioned. The early phase of transferred EAT showed a higher percentage of L3T4+ cells compared to Lyt-2+ cells, yielding a ratio of 2.3 and total T cells of about 35%. By Day 10, both T cell subsets had increased to a total of about 56%. However, the relative increase was greater in the Lyt-2+ subset; the nearly doubled percentage was statistically significant, resulting in a downward shift in the subset ratio to 1.7. Little change in the in situ distribution was seen on Day 14. The percentages of F4/80+ (macrophage) population in lesions examined on Days 10 and 14 were fairly constant and B cell involvement was minimal. These findings illustrate the pathogenic role of both T cell subsets in adoptively transferred EAT and the time-dependent changes in their relative proportions leading to thyroid gland destruction.  相似文献   

13.
The ability of activated B cells to protect against various experimental autoimmune or allergic diseases makes them attractive for use in cell-based therapies. We describe an efficient way to generate B cells with strong suppressive functions by incubating naive B cells with a relevant Ag conjugated to cholera toxin B subunit (CTB). This allows most B cells, irrespective of BCR, to take up and present Ag and induces their expression of latency-associated polypeptide (LAP)/TGF-β and after adoptive transfer also their production of IL-10. With OVA as model Ag, when naive T cells were cocultured in vitro with B cells pretreated with OVA conjugated to CTB (OVA/CTB) Ag-specific CD4(+) Foxp3 regulatory T (Treg) cells increased >50-fold. These cells effectively suppressed CD25(-)CD4(+) effector T (Teff) cells in secondary cultures. Adoptive transfer of OVA/CTB-treated B cells to mice subsequently immunized with OVA in CFA induced increase in Foxp3 Treg cells together with suppression and depletion of Teff cells. Likewise, adoptive transfer of B cells pulsed with myelin oligodendrocyte glycoprotein peptide(35-55) (MOGp) conjugated to CTB increased the number of Treg cells, suppressed MOGp-specific T cell proliferation and IL-17 and IFN-γ production, and prevented the development of experimental autoimmune encephalomyelitis. Similar effects were seen when B cells were given "therapeutically" to mice with early-stage experimental autoimmune encephalomyelitis. Our results suggest that B cells pulsed in vitro with relevant Ag/CTB conjugates may be used in cell therapy to induce Ag-specific suppression of autoimmune disease.  相似文献   

14.
Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.  相似文献   

15.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   

16.
Susceptibility to experimental autoimmune thyroiditis (EAT) in the mouse is linked to the I-A subregion of the major histocompatibility complex. EAT can be induced in susceptible strains of mice by immunization with mouse thyroglobulin (MTg) and adjuvant. We have described a cell transfer system wherein spleen cells from EAT-susceptible CBA/J mice primed in vivo with MTg and lipopolysaccharide (LPS) can be activated in vitro with MTg to transfer EAT to naive syngeneic recipients. This cell transfer system was used to elucidate the cellular basis for the I-A restriction in EAT. While the cell active in transferring EAT was Thy 1+ I-A-, depletion of I-A+ cells from the in vitro culture prevented the activation of EAT effector T cells. MTg-pulsed mitomycin C-treated naive syngeneic spleen cells as antigen-presenting cells (APCs) could replace the I-A+ cells in vitro. Allogeneic (Balb/c) APCs were ineffective. Using APCs from several recombinant inbred strains of mice, it was shown that C3H/HEN and B10.A(4R) APCs were effective in activating MTg/LPS-primed CBA/J spleen cells to transfer EAT while B10.A(5R) APCs were ineffective. This maps the H-2 restriction to the K or I-A subregions. Addition of polyclonal anti-Iak or monoclonal anti-I-Ak or anti-L3T4 during in vitro activation inhibited both the generation of EAT effector cells and the proliferative response to MTg. Irrelevant anti-Ia reagents, monoclonal anti-I-Ek, and monoclonal anti-I-Jk were ineffective. Thus the I-A restriction in murine EAT appears to result from an I-A restricted interaction between Ia+ APCs and Ia- EAT effector T cells.  相似文献   

17.
Previous studies have shown that T cells from mice genetically susceptible to experimental autoimmune thyroiditis (EAT) recognize determinants shared between mouse thyroglobulin (Tg) and heterologous Tgs. Some shared determinants are thyroiditogenic; lymphocytes from mice immunized with mouse Tg (MTg) or human Tg (HTg) and reciprocally restimulated in vitro with either Tg can transfer EAT. Studies on the mechanisms of self-tolerance have shown that pretreatment with soluble MTg suppresses in vitro proliferation to MTg and EAT induction with MTg. To determine the role of share epitopes in maintaining tolerance, mice were pretreated with soluble HTg and immunized with HTg or MTg and adjuvant. Cells from HTg-pretreated. HTg-immunized mice showed suppressed in vitro proliferative response to HTg. Following MTg immunization, the cells showed suppressed in vitro response to MTg. However, in contrast to MTg pretreatment, the subsequent development of EAT in vivo was unaltered in severity following HTg pretreatment. Thus, determinants shared between HTg and MTg can induce suppression of in vitro responses to HTg and MTg, but not inhibit the onset of thyroiditis, suggesting that T cells recognizing MTg-unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique epitopes expanded to mediate thyroiditis. We conclude that recognition of both unique and shared epitopes on MTg are essential for the overall maintenance of self-tolerance.  相似文献   

18.
Thyroglobulin (Tg) represents one of the largest known self-antigens involved in autoimmunity. Numerous studies have implicated it in triggering and perpetuating the autoimmune response in autoimmune thyroid diseases (AITD). Indeed, traditional models of autoimmune thyroid disease, experimental autoimmune thyroiditis (EAT), are generated by immunizing mice with thyroglobulin protein in conjunction with an adjuvant, or by high repeated doses of Tg alone, without adjuvant. These extant models are limited in their experimental flexibility, i.e. the ability to make modifications to the Tg used in immunizations. In this study, we have immunized mice with a plasmid cDNA encoding the full-length human Tg (hTG) protein, in order to generate a model of Hashimoto's thyroiditis which is closer to the human disease and does not require adjuvants to breakdown tolerance. Human thyroglobulin cDNA was injected and subsequently electroporated into skeletal muscle using a square wave generator. Following hTg cDNA immunizations, the mice developed both B and T cell responses to Tg, albeit with no evidence of lymphocytic infiltration of the thyroid. This novel model will afford investigators the means to test various hypotheses which were unavailable with the previous EAT models, specifically the effects of hTg sequence variations on the induction of thyroiditis.  相似文献   

19.
Nonobese diabetic (NOD) mice develop spontaneous autoimmune diabetes that involves participation of both CD4+ and CD8+ T cells. Previous studies have demonstrated spontaneous reactivity to self-Ags within the CD4+ T cell compartment in this strain. Whether CD8+ T cells in NOD mice achieve and maintain tolerance to self-Ags has not previously been evaluated. To investigate this issue, we have assessed the extent of tolerance to a model pancreatic Ag, the hemagglutinin (HA) molecule of influenza virus, that is transgenically expressed by pancreatic islet beta cells in InsHA mice. Previous studies have demonstrated that BALB/c and B10.D2 mice that express this transgene exhibit tolerance of HA and retain only low-avidity CD8+ T cells specific for the dominant peptide epitope of HA. In this study, we present data that demonstrate a deficiency in peripheral tolerance within the CD8+ T cell repertoire of NOD-InsHA mice. CD8+ T cells can be obtained from NOD-InsHA mice that exhibit high avidity for HA, as measured by tetramer (K(d)HA) binding and dose titration analysis. Significantly, these autoreactive CD8+ T cells can cause diabetes very rapidly upon adoptive transfer into NOD-InsHA recipient mice. The data presented demonstrate a retention in the repertoire of CD8+ T cells with high avidity for islet Ags that could contribute to autoimmune diabetes in NOD mice.  相似文献   

20.
Serum IgE is suppressed in CD23-transgenic (Tg) mice where B cells and some T cells express high levels of CD23, suggesting that CD23 on B and T cells may cause this suppression. However, when Tg B lymphocytes were compared with controls in B cell proliferation and IgE synthesis assays, the two were indistinguishable. Similarly, studies of lymphokine production suggested that T cell function in the Tg animals was normal. However, adoptive transfer studies indicated that suppression was seen when normal lymphocytes were used to reconstitute Tg mice, whereas reconstitution of controls with Tg lymphocytes resulted in normal IgE responses, suggesting that critical CD23-bearing cells are irradiation-resistant, nonlymphoid cells. Follicular dendritic cells (FDC) are irradiation resistant, express surface CD23, and deliver iccosomal Ag to B cells, prompting us to reason that Tg FDC may be a critical cell. High levels of transgene expression were observed in germinal centers rich in FDC and B cells, and IgE production was inhibited when Tg FDCs were cultured with normal B cells. In short, suppressed IgE production in CD23-Tg mice appears to be associated with a population of radioresistant nonlymphoid cells. FDCs that interface with B cells in the germinal center are a candidate for explaining this CD23-mediated IgE suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号