首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The FinO protein regulates the transfer potential of F-like conjugative plasmids through its interaction with FinP antisense RNA and its target, traJ mRNA. FinO binds to and protects FinP from degradation and promotes duplex formation between FinP and traJ mRNA in vitro. The FinP secondary structure consists of two stem-loop domains separated by a 4-base spacer and terminated by a 6-base tail. Previous studies suggested FinO bound to the smooth 14-base pair helix of stem-loop II. In this investigation, RNA mobility shift analysis was used to study the interaction between a glutathione S-transferase (GST)-FinO fusion protein and a series of synthetic FinP and traJ mRNA variants. Mutations in 16 of the 28 bases in stem II of FinP that are predicted to disrupt base pairing did not significantly alter the GST-FinO binding affinity. Removal of the single-stranded regions on either side of stem-loop II led to a dramatic decrease in GST-FinO binding to FinP and to the complementary region of the traJ mRNA leader. While no evidence for sequence-specific contacts was found, the results suggest that FinO recognizes the overall shape of the RNA and is influenced by the length of the single-stranded regions flanking the stem-loop.  相似文献   

13.
14.
Site-directed mutagenesis was used to investigate the functions of the traM gene in plasmid R1-mediated bacterial conjugation. Three mutant alleles, a null mutation, a sense mutation and a stop mutation, were recombined back into the R1-16 plasmid, a transfer-derepressed ( finO  ) variant of plasmid R1. The frequency of conjugative transfer of the traM null mutant derivative of R1-16 was 107-fold lower than that of the isogenic parent plasmid, showing the absolute requirement for this gene in conjugative transfer of plasmid R1. Measurements of the abundance of plasmid specified traJ , traA and traM mRNAs, TraM protein levels, and complementation studies indicated that the traM gene of plasmid R1 has at least two functions in conjugation: (i) positive control of transfer gene expression; and (ii) a function in a process distinct from gene expression. Since expression of the negatively autoregulated traM gene is itself affected positively by the expression of the transfer operon genes, this gene constitutes a decisive element within a regulatory circuit that co-ordinates expression of the genes necessary for horizontal DNA transfer. Based on our studies, we present a novel model for the regulation of the transfer genes of plasmid R1 that might also be applicable to other IncF plasmids.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号