首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Is the epithelial lining of the mammalian gastrointestinal (GI) tract a tight barrier against the uptake of ingested foreign DNA or can such foreign DNA penetrate into the organism? We approached this question by pipette-feeding circular or linearized double-stranded phage M13 DNA to mice or by adding M13 DNA to the food of mice whose fecal excretions had previously been shown to be devoid of this DNA. At various post-prandial times, the feces of the animals was tested for M 13 DNA sequences by Southern or dot blot hybridization or by the polymerase chain reaction (PCR). On Southern blot hybridization, the majority of M13 DNA fragments were found in the size range between < 200 and 400 by (base pairs). For the PCR analysis, synthetic oligodeoxyribonucleotide primers were spaced on the M13 DNA molecule such that the sizes of the persisting M13 DNA fragments could be determined. We also extracted DNA from whole blood or from sedimented blood cells of the animals at different times after feeding M t3 DNA and examined these DNA preparations for the presence of M13 DNA by dot blot hybridization or by PCR. M13 DNA fragments were found between 1 and 7 h postprandially in the feces of mice. By PCR analysis, fragments of 712, 976, and 1692 by in length were detected. In DNA from blood, M13 DNA fragments of up to 472 by were found by PCR between 2 and 6 h after feeding. Dot blot or Southern blot hybridization revealed M13 DNA at 2 and 4 h, but not at 1, 8 or 24 h after feeding. This DNA was shown to be DNase sensitive. M13 DNA was found both in blood cells and in the serum. A segment of about 400 by of the DNA amplified by PCR from feces or blood was analyzed for its nucleotide sequence which was found to be identical to that of authentic M13 DNA, except for a few deviations. M13 DNA could not be detected in the feces or in the blood of the animals prior to feeding or prior to 1 h and later than 7 h after feeding. These controls attest to the validity of the results and also argue against the possibility that the murine GI tract had been colonized by phage M13. Moreover, M13 DNA-positive bacterial colonies were never isolated from the feces of animals that had ingested M13 DNA. The results of reconstitution experiments suggested that 2 to 4% of the orally administered M13 DNA could be detected in the GI tract of mice. A proportion of about 0.01% to 0.1% of the M13 DNA fed could be retrieved from the blood.  相似文献   

2.
3.
Hypervariable nucleotide sequences detected by hybridization with the phage M13 DNA probe were found in the chromosomal DNAs of certain pathogenic microbial species. DNA fingerprinting, based on hybridization of M13-probe with hypervariable chromosomal DNA sequences, opens new approaches to epidemiological analysis, epidemiological prognosis, taxonomy, and other theoretical and applied fields of bacteriology.  相似文献   

4.
Several DNA oligonucleotides have been photochemically modified with the furocoumarin 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) such that each contained a single HMT furan side monoadduct to thymidine at a unique 5' TpA 3' sequence. When these oligonucleotides were hybridized to their respective complements, the HMT adduct could be driven to form an interstrand crosslink by irradiation of the hybrid with 360 nm light. The ability to crosslink probe-target complexes has allowed us to determine the kinetics and the extent of hybridization in solution between these oligonucleotides and their complementary sequences in single-stranded bacteriophage M13 DNA. Our data indicate that these parameters are strongly influenced by the existence of local as well as global secondary structure in the viral DNA. During hybridization, rearrangement of this secondary structure so as to expose the target sequence can be rate-limiting. Upon attainment of equilibrium, only a portion of the target sequence may be hybridized to the probe with the remainder involved in intrastrand base-pairing. Using crosslinkable oligonucleotide probes hybridized and irradiated near the melting temperature of the respective probe-target complex one can partially overcome these secondary structure effects.  相似文献   

5.
The thermodynamics of 13 hybridization reactions between 10 base DNA sequences of design 5'-ATGCXYATGC-3' with X, Y = A, C, G, T and their complementary PNA and DNA sequences were determined from isothermal titration calorimetry (ITC) measurements at ambient temperature. For the PNA/DNA hybridization reactions, the binding constants range from 1.8 x 10(6)M(-1)for PNA(TT)/DNA to 4.15 x 10(7)M(-1)for PNA(GA)/DNA and the binding enthalpies range from -194 kJ mol(-1)for PNA(CG)/DNA to -77 kJ mol(-1)for PNA(GT)/DNA. For the corresponding DNA/DNA binding reactions, the binding constants range from 2.9 x 10(5)M(-1)for DNA(GT)/DNA to 1.9 x 10(7)M(-1)for DNA(CC)/DNA and the binding enthalpies range from -223 kJ mol(-1)for DNA(CG)/DNA to -124 kJ mol(-1)for DNA(TT)/DNA. Most of the PNA sequences exhibited tighter binding affinities than their corresponding DNA sequences resulting from smaller entropy changes in the PNA/DNA hybridization reactions. van't Hoff enthalpies and extrapolated Delta G values determined from UV melting studies on the duplexes exhibited closer agreement with the ITC binding enthalpies and Delta G values for the DNA/DNA duplexes than for the PNA/DNA duplexes.  相似文献   

6.
Using DNA molecules to construct a structural scaffold for nanotechnology is largely accepted. In this article, we report on two methods for constructing a figure-eight structure of DNA molecules having a relatively high yield that could be used further as a scaffold for nanotechnology applications. In the first method, two plasmids were constructed that, on digestion with a restriction endonuclease producing nicks in the corresponding sites and after heating, produced complementary single-stranded sequences, enabling the plasmids to hybridize to each other and forming a figure-eight structure. The formation of the figure-eight structure was analyzed by restriction analysis and gel electrophoresis as well as by atomic force microscopy. The second method makes use of the bacteriophage M13 that is obtained as either a single- or double-stranded circular DNA molecule. Two M13 molecules harboring complementary sequences were constructed and produced a figure-eight structure on hybridization. The methods described here could be used further for the construction of nanoelectronic devices.  相似文献   

7.
DNA from two regions of the phage M13 genome hybridizes with DNA restriction fragments from genomes of various species including man [15, 20]. As the pattern of hybridization is individual-specific, this phage M13 probe can be used for DNA fingerprinting. We demonstrate here that the regions of many keratin genes coding for glycine-rich parts of C and N end domains are very similar to the phage M13 probe, and this similarity may be responsible for hybridization.  相似文献   

8.
Advantage of cloning probe DNA fragment in phage M13 DNA was taken to provide a larger single stranded DNA as a hybridization probe. High level of direct enzyme labels was introduced via the M13 DNA moiety as well as probe DNA. A highly sensitive colorimetric detection of virus DNA and oncogene was developed.  相似文献   

9.
The hyperpolymorphism of minisatellite DNA hybridizing with DNA of bacteriophage M13 was analyzed in seven Turkic and Finno-Ugric populations from the Volga-Urals region. In total, hybridization revealed 80 BspRI genomic DNA fragments ranging in size from 1.7 to 10 kb; the average frequency of an individual fragment was 0.299 +/- 0.020. The average number of hybridization fragments per pattern (varying from 14 to 20 in different populations) and frequencies of individual fragments showed significant interpopulation differences. Parameters of this polymorphic system were assumed to reflect phenotypic diversity of populations. Genome fingerprinting with the use of phage M13 can be employed in the studies of population genetic structure and differentiation and in forensic medicine, for more accurate personal identification.  相似文献   

10.
J Z Liu  K D Lanclos  T H Huisman 《Gene》1986,42(1):113-117
A simple and efficient technique has been developed for preparing radiolabeled single-stranded (ss) probes of determined length and high specific radioactivity. The human beta-globin gene intervening segment II (IVSII) fragment (0.9-kb) was inserted between the EcoRI and BamHI sites of M13mp11 and used as a template for ss probe synthesis. The M13 hybridization probe primer (M13 Hpp) was annealed to the recombinant M13mp11-beta IVSII template DNA. This M13 Hpp was next blocked by the enzymatic addition of a dideoxy adenosine monophosphate (ddAMP) residue to the 3' OH group of the primer. The M13 universal sequencing primer was then annealed and used to prepare an ss copy of the beta-IVSII fragment. Synthesis of the ss fragment was terminated by the presence of the dd-blocked M13 Hpp yielding a specific 0.9-kb ss beta-IVSII probe.  相似文献   

11.
A comparative analysis of the total cellular DNA in certain parthenogenetic specimens of the silkworm (Bombyx mori), produced from the females of the parthenogenetic strains by two types of parthenogenesis, has been performed through the application of the DNA fingerprinting method based on M13 phage DNA as a hybridization probe. It has been shown that parental specimens and their genetically identical off-springs produced through ameiotic parthenogenesis have identical patterns of hybridization with the hypervariable DNA fragments. The off-springs produced through the meiotic type of parthenogenesis have individual-specific patterns of hybridization, revealing a high level of polymorphism of individual genotypes. The results obtained testify to the effectiveness and reliability of this promising method for identification of genotypic variability, marking and genomic characterization of parthenogenetic clones in the silkworm.  相似文献   

12.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

13.
A approximately 400 bp HaeIII human genomic satellite DNA band was cloned into pUC18 to construct a partial library. A fragment of bacteriophage M13 containing a sequence homologous to the human minisatellite core was cloned in pUC18 and was used as a probe to isolate a approximately 350 bp human satellite clone (pTRF5.6) from the partial library. Other clones from this library showed a wide variation in terms of size and hybridization to the pTRF5.6 clone. Human DNA from different individuals was digested with restriction enzymes, Southern transferred and probed with TRF5.6. Individual-specific complex pattern of DNA bands was produced. TRF5.6, therefore, could be useful as a probe for detecting genetic polymorphism.  相似文献   

14.
We demonstrated a novel application of transient coulostatic pulse technique for the detection of label free DNA hybridization on nm-sized gold interdigitated ultramicroelectrode arrays (Au-IDA) made in silicon technology. The array consists of eight different positions with an Au-IDA pair at each position arranged on the Si-based Biochip. Immobilization of capture probes onto the Au-IDA was accomplished by self-assembling of thiol-modified oligonucleotides. Target hybridization was indicated by a change in the magnitude of the time dependant potential relaxation curve in presence of electroactive Fe(CN)(6)(3-) in the phosphate buffer solution. While complementary DNA hybridization showed 50% increase in the relaxation potential, the non-complementary DNA showed a negligible change. A constant behaviour was noted for all positions. The dsDNA specific intercalating molecule, methylene blue, was found to be enhancing the discrimination effect. The changes in the relaxation potential curves were further corroborated following the ELISA like experiments using ExtraAvidine alkaline phosphatase labelling and redox recycling of para-aminophenol phosphate at IDAs. The coulostatic pulse technique was shown to be useful for identifying DNA sequences from brain tumour gene CK20, human herpes simplex virus, cytomegalovirus, Epstein-Barr virus and M13 phage. Compared to the hybridization of short chain ONTs (27 mers), the hybridization of long chain M13 phage DNA showed three times higher increase in the relaxation curves. The method is fast enough to monitor hybridization interactions in milli or microsecond time scales and is well suitable for miniaturization and integration compared to the common impedance techniques for developing capacitative DNA sensors.  相似文献   

15.
16.
Use of DNA polymorphism detected by M13 phage DNA in population studies]   总被引:1,自引:0,他引:1  
Hypervariable "minisatellite" regions detected in human genome by wild-type phage M13 DNA were found to have high polymorphism and somatic stability. Analysis of individual specific patterns of hybridization of 44 human DNAs from the Kirov province is presented. Molecular weight of fragments varied from 2 to 6 kb. Mean frequency of a fragment in the population under study is p = 0.294 +/- 0.158. The mean number of fragments per individual is 11.6 +/- 1.8. Comparison between the Kirov population and that of Krasnodar studied earlier was carried out. The mean genetic distance between Kirov and Krasnodar populations calculated according to Nei is 0.2082. The possibility of using in population-genetic studies of hypervariable DNA markers having fingerprint type of hybridization is discussed.  相似文献   

17.
A recombinant genomic clone was isolated from a lambda gt 11 library of M. tuberculosis on the basis of lack of hybridization with M. avium and M. kansasi. The specificity and sensitivity of M. tb DNA probes, 2.5 and 2.3 kb in size, were assessed by Southern blot and dot blot hybridization. These did not cross hybridize to DNA of mycobacteria other than members of M. tb complex, nor with DNA of non mycobacterial origin. Sensitivity was determined to be 200 pg which is equivalent to 10(4) bacilli. Genomic Southern hybridization indicated single copy nature of the probes.  相似文献   

18.
B Huey  J Hall 《Journal of bacteriology》1989,171(5):2528-2532
Extensive restriction-fragment-length polymorphism was revealed in Escherichia coli strains by using a region of the bacteriophage M13 genome as a DNA hybridization probe. This variation was observed across natural strains, in clinical samples, and to a lesser extent in laboratory strains. The sequence in M13 which revealed this fingerprint pattern was a region of the gene III coat protein, which contains two clusters of a 15-base-pair repeat. Oligonucleotides made to a consensus of these repeats also revealed the fingerprint profile. While this consensus sequence has significant homology to the lambda chi site sequence, an oligonucleotide made of the chi sequence did not reveal polymorphic fingerprint patterns in E. coli. The strain variation revealed by the M13 and M13-derived oligonucleotide probes will be useful for bacterial characterization and should find use in studies of bacterial evolution and population dynamics. The findings raise questions about what these repeated sequences are and why they are so variable.  相似文献   

19.
The rise of Mycobacterium genavense infections is making identification ever more important for diagnosis and treatment. Moreover, isolation and identification of M. genavense are made difficult by the lack of growth on solid media and by its low generation rate in BACTEC liquid media. Thus, amplification by PCR or similar techniques represents the only possibility of detecting and identifying M. genavense from tissue samples. In order to set up a simple and species-specific method based on the use of PCR and non-radioactive hybridization technique, we decided to search for and clone a specific DNA fragment of this bacterial species. In the present study, a 1734-bp fragment was isolated. This fragment was found to be highly specific for M. genavense strains. A species-specific pair of primers (MG22 and MG23) and two oligonucleotide probes (MG18 and MG19) were selected. They were successfully used to amplify and detect a 155-bp DNA fragment from the 13 available strains of M. genavense which were isolated from clinical specimens or from birds. Conversely, the primers and probes did not hybridize with DNA from any of the 20 other mycobacterial species tested. It is worth noting that the chosen primers and probes did not hybridize with DNA of M. simiae, although it is closely related to M. genavense. The present PCR technique uses species-specific primers for M. genavense. Followed by a non-radioactive hybridization technique on microplates it is able to distinguish M. genavense from other mycobacteria in one step, without sequencing or restriction analysis. On the basis of the Southern blot hybridization, PCR and sandwich hybridization results, we concluded that the isolated 1.7-kb sequence was specific for the M. genavense chromosome. The method developed here for M. genavense identification uses a simple methodology and commonly available reagents. Furthermore it can be easily automated.  相似文献   

20.
The RF IV form of M13 DNA was synthesized enzymatically in vitro, using the viral (+)strand as template, to contain phosphorothioate-modified internucleotidic linkages of the Rp configuration on the 5' side of every base of a particular type in the newly-synthesized (-)strand. Twenty nine restriction enzymes were then tested for their reactions with the appropriate modified DNA types having a phosphorothioate linkage placed exactly at the cleavage site(s) of these enzymes in the (-)strand. Eleven of the seventeen restriction enzymes tested that had recognition sequences of five bases or more could be used to convert the phosphorothioate DNA entirely into the nicked form, either by simply allowing the reaction to go to completion with excess enzyme (Ava I, Ava II, Ban II, Hind II, Nci I, Pst I or Pvu I) or by stopping the reaction at the appropriate time before the nicked DNA is linearized (Bam HI, Bgl I, Eco RI or Hind III). Only modification of the exact cleavage site in the (-)strand could block linearization by the first class of enzymes. The results presented imply that the restriction enzyme-directed nicking of phosphorothioate M13 DNA occurs exclusively in the (+)strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号