首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Visual arrestin, betaarrestin1, and betaarrestin2 comprise a family of intracellular proteins that desensitize G protein-coupled receptors (GPCRs). In addition, betaarrestin1 and betaarrestin2 target desensitized receptors to clathrin-coated pits for endocytosis. Whether arrestins differ in their ability to interact with GPCRs in cells is not known. In this study, we visualize the interaction of arrestin family members with GPCRs in real time and in live cells using green fluorescent protein-tagged arrestins. In the absence of agonist, visual arrestin and betaarrestin1 were found in both the cytoplasm and nucleus of HEK-293 cells, whereas betaarrestin2 was found only in the cytoplasm. Analysis of agonist-mediated arrestin translocation to multiple GPCRs identified two major classes of receptors. Class A receptors (beta2 adrenergic receptor, mu opioid receptor, endothelin type A receptor, dopamine D1A receptor, and alpha1b adrenergic receptor) bound betaarrestin2 with higher affinity than betaarrestin1 and did not interact with visual arrestin. In contrast, class B receptors (angiotensin II type 1A receptor, neurotensin receptor 1, vasopressin V2 receptor, thyrotropin-releasing hormone receptor, and substance P receptor) bound both betaarrestin isoforms with similar high affinities and also interacted with visual arrestin. Switching the carboxyl-terminal tails of class A and class B receptors completely reversed the affinity of each receptor for the visual and non-visual arrestins. In addition, exchanging the betaarrestin1 and betaarrestin2 carboxyl termini reversed their extent of binding to class A receptors as well as their subcellular distribution. These results reveal for the first time marked differences in the ability of arrestin family members to bind GPCRs at the plasma membrane. Moreover, they show that visual arrestin can interact in cells with GPCRs other than rhodopsin. These findings suggest that GPCR signaling may be differentially regulated depending on the cellular complement of arrestin isoforms and the ability of arrestins to interact with other cellular proteins.  相似文献   

2.
Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin 'frozen' in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions.  相似文献   

3.
Ahmed MR  Zhan X  Song X  Kook S  Gurevich VV  Gurevich EV 《Biochemistry》2011,50(18):3749-3763
Numerous mutations in E3 ubiquitin ligase parkin were shown to associate with familial Parkinson's disease. Here we show that parkin binds arrestins, versatile regulators of cell signaling. Arrestin-parkin interaction was demonstrated by coimmunoprecipitation of endogenous proteins from brain tissue and shown to be direct using purified proteins. Parkin binding enhances arrestin interactions with another E3 ubiquitin ligase, Mdm2, apparently by shifting arrestin conformational equilibrium to the basal state preferred by Mdm2. Although Mdm2 was reported to ubiquitinate arrestins, parkin-dependent increase in Mdm2 binding dramatically reduces the ubiquitination of both nonvisual arrestins, basal and stimulated by receptor activation, without affecting receptor internalization. Several disease-associated parkin mutations differentially affect the stimulation of Mdm2 binding. All parkin mutants tested effectively suppress arrestin ubiquitination, suggesting that bound parkin shields arrestin lysines targeted by Mdm2. Parkin binding to arrestins along with its effects on arrestin interaction with Mdm2 and ubiquitination is a novel function of this protein with implications for Parkinson's disease pathology.  相似文献   

4.
Arrestins regulate the activity and subcellular localization of G protein-coupled receptors and other signaling molecules. Here, we demonstrate that arrestins bind microtubules (MTs) in vitro and in vivo. The MT-binding site on arrestins overlaps significantly with the receptor-binding site, but the conformations of MT-bound and receptor-bound arrestin are different. Arrestins recruit ERK1/2 and the E3 ubiquitin ligase Mdm2 to MTs in cells, similar to the arrestin-dependent mobilization of these proteins to the receptor. Arrestin-mediated sequestration of ERK to MTs reduces the level of ERK activation. In contrast, recruitment of Mdm2 to MTs by arrestin channels Mdm2 activity toward cytoskeleton-associated proteins, increasing their ubiquitination dramatically. The mobilization of signaling molecules to MTs is a novel biological function of arrestin proteins.  相似文献   

5.
G-protein-coupled receptor signaling is terminated by arrestin proteins that preferentially bind to the activated phosphorylated form of the receptor. Arrestins also bind active unphosphorylated and inactive phosphorylated receptors. Binding to the non-preferred forms of the receptor is important for visual arrestin translocation in rod photoreceptors and the regulation of receptor signaling and trafficking by non-visual arrestins. Given the importance of arrestin interactions with the various functional forms of the receptor, we performed an extensive analysis of the receptor-binding surface of arrestin using site-directed mutagenesis. The data indicated that a large number of surface charges are important for arrestin interaction with all forms of the receptor. Arrestin elements involved in receptor binding are differentially engaged by the various functional forms of the receptor, each requiring a unique subset of arrestin residues in a specific spatial configuration. We identified several additional phosphate-binding elements in the N-domain and demonstrated for the first time that the active receptor preferentially engages the arrestin C-domain. We also found that the interdomain contact surface is important for arrestin interaction with the non-preferred forms of the receptor and that residues in this region play a role in arrestin transition into its high affinity receptor binding state.  相似文献   

6.
Arrestins bind active phosphorylated G protein-coupled receptors, terminating G protein activation. Receptor-bound non-visual arrestins interact with numerous partners, redirecting signaling to alternative pathways. Arrestins also have nuclear localization and nuclear exclusion signals and shuttle between the nucleus and the cytoplasm. Constitutively shuttling proteins often redistribute their interaction partners between the two compartments. Here we took advantage of the nucleoplasmic shuttling of free arrestins and used a "nuclear exclusion assay" to study their interactions with two proteins involved in "life-and-death" decisions in the cell, the kinase JNK3 and the ubiquitin ligase Mdm2. In human embryonic kidney 293 cells green fluorescent protein (GFP)-JNK3 and GFP-Mdm2 predominantly localize in the nucleus, whereas visual arrestin, arrestin2(Q394L) mutant equipped with the nuclear exclusion signal, and arrestin3 localize exclusively to the cytoplasm. Coexpression of arrestins moves both GFP-JNK3 and GFP-Mdm2 to the cytoplasm. Arrestin mutants "frozen" in the basal conformation are the most efficacious. Thus, arrestins in their basal state interact with JNK3 and Mdm2, suggesting that arrestins are likely "preloaded" with their interaction partners when they bind the receptor. Robust interaction of free arrestins with JNK3 and Mdm2 and their ability to regulate subcellular localization of these proteins may play an important role in the survival of photoreceptors and other neurons, as well as in retinal and neuronal degeneration.  相似文献   

7.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

8.
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.  相似文献   

9.
It is now well accepted that G protein-coupled receptors activated by agonist binding become targets for phosphorylation, leading to desensitization of the receptor. Using a series of phosphorylation deficient mutants of the N-formyl peptide receptor (FPR), we have explored the role of phosphorylation on the ability of the receptor to interact with G proteins and arrestins. Using a fluorometric assay in conjunction with solubilized receptors, we demonstrate that phosphorylation of the wild type FPR lowers its affinity for G protein, whereas mutant receptors lacking four potential phosphorylation sites retain their ability to couple to G protein. Phosphorylated mutant receptors lacking only two potential phosphorylation sites are again unable to couple to G protein. Furthermore, whereas stimulated wild type FPR in whole cells colocalizes with arrestin-2, and the solubilized, phosphorylated FPR binds arrestin-2, the stimulated receptors lacking four potential phosphorylation sites display no interaction with arrestin-2. However, the mutant receptors lacking only two potential phosphorylation sites are restored in their ability to bind and colocalize with arrestin-2. Thus, there is a submaximal threshold of FPR phosphorylation that simultaneously results in an inhibition of G protein binding and an induction of arrestin binding. These results are the first to demonstrate that less than maximal levels of receptor phosphorylation can block G protein binding, independent of arrestin binding. We therefore propose that phosphorylation alone may be sufficient to desensitize the FPR in vivo, raising the possibility that for certain G protein-coupled receptors, desensitization may not be the primary function of arrestin.  相似文献   

10.
Arrestins regulate the signaling and endocytosis of many G protein-coupled receptors (GPCRs). It has been suggested that the functions of arrestins are dependent upon both the number and pattern of phosphorylation sites present in an activated GPCR. However, little is currently known about the relationships between the sites of receptor phosphorylation, the resulting affinities of arrestin binding, and the ensuing mechanisms of receptor regulation for any given GPCR. To investigate these interactions, we used an active truncated mutant of arrestin (amino acids 1-382) and phosphorylation-deficient mutants of the N-formyl peptide receptor (FPR). In contrast to results with wild type arrestins, the truncated arrestin-2 protein bound to the unphosphorylated wild type FPR, although with lower affinity and a low affinity for the agonist as revealed by competition studies with heterotrimeric G proteins. Using FPR mutants, we further demonstrated that the phosphorylation status of serines and threonines between residues 328-332 is a key determinant that regulates the affinity of the FPR for arrestins. Furthermore, we found that the phosphorylation status of serine and threonine residues between amino acids 334 and 339 regulates the affinity of the receptor for agonist when arrestin is bound. These results suggest that the agonist affinity state of the receptor is principally regulated by phosphorylation at specific sites and is not simply a consequence of arrestin binding as has previously been proposed. Furthermore, this is the first demonstration that agonist affinity of a GPCR and the affinity of arrestin binding to the phosphorylated receptor are regulated by distinct receptor phosphodomains.  相似文献   

11.
Arrestins play a key role in the homologous desensitization of G protein-coupled receptors (GPCRs). These cytosolic proteins selectively bind to the agonist-activated and GPCR kinase-phosphorylated forms of the GPCR, precluding its further interaction with the G protein. Certain mutations in visual arrestin yield "constitutively active" proteins that bind with high affinity to the light-activated form of rhodopsin without requiring phosphorylation. The crystal structure of visual arrestin shows that these activating mutations perturb two groups of intramolecular interactions that keep arrestin in its basal (inactive) state. Here we introduced homologous mutations into arrestin2 and arrestin3 and found that the resulting mutants bind to the beta(2)-adrenoreceptor in vitro in a phosphorylation-independent fashion. The same mutants effectively desensitize both the beta(2)-adrenergic and delta-opioid receptors in the absence of receptor phosphorylation in Xenopus oocytes. Moreover, the arrestin mutants also desensitize the truncated delta-opioid receptor from which the C terminus, containing critical phosphorylation sites, has been removed. Conservation of the phosphate-sensitive hot spots in non-visual arrestins suggests that the overall fold is similar to that of visual arrestin and that the mechanisms whereby receptor-attached phosphates drive arrestin transition into the active binding competent state are conserved throughout the arrestin family of proteins.  相似文献   

12.
Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. We report the first crystal structure of arrestin-3, solved at 3.0 Å resolution. Arrestin-3 is an elongated two-domain molecule with overall fold and key inter-domain interactions that hold the free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding a wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, which is consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and arrestin-3 we show that the presence of this loose structure is correlated with reduced arrestin selectivity for activated receptors, consistent with a conformational change in this β-sheet upon receptor binding.  相似文献   

13.
Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.  相似文献   

14.
In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also found in insects, protochordates and nematodes. Fungi and protists have related proteins but do not have true arrestins. Structural information is available only for free (unbound) vertebrate arrestins, and shows that the conserved overall fold is elongated and composed of two domains, with the core of each domain consisting of a seven-stranded β-sandwich. Two main intramolecular interactions keep the two domains in the correct relative orientation, but both of these interactions are destabilized in the process of receptor binding, suggesting that the conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR subtypes, arrestins interact with other classes of membrane receptors and more than 20 surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling regulators in the cytoplasm and nucleus.  相似文献   

15.
The non-visual arrestins, arrestin-2 and arrestin-3, play a critical role in regulating the signaling and trafficking of many G protein-coupled receptors (GPCRs). Molecular insight into the role of arrestins in GPCR trafficking has suggested that arrestin interaction with clathrin, beta(2)-adaptin (the beta-subunit of the adaptor protein AP2), and phosphoinositides contributes to this process. In the present study, we have attempted to better define the molecular basis and functional role of arrestin-2 interaction with clathrin and beta(2)-adaptin. Site-directed mutagenesis revealed that the C-terminal region of arrestin-2 mediated beta(2)-adaptin and clathrin interaction with Phe-391 and Arg-395 having an essential role in beta(2)-adaptin binding and LIELD (residues 376-380) having an essential role in clathrin binding. Interestingly, arrestin-2-R169E, an activated form of arrestin that binds to GPCRs in a phosphorylation-independent manner, has significantly enhanced binding to beta(2)-adaptin and clathrin. This suggests that receptor-induced conformational changes in the C-terminal tail of arrestin-2 will likely play a major role in mediating arrestin interaction with clathrin-coated pits. In an effort to clarify the role of these interactions in GPCR trafficking we generated arrestin mutants that were completely and selectively defective in either clathrin (arrestin-2-DeltaLIELD) or beta(2)-adaptin (arrestin-2-F391A) interaction. Analysis of these mutants in COS-1 cells revealed that arrestin/clathrin interaction was essential for agonist-promoted internalization of the beta(2)-adrenergic receptor, while arrestin/beta(2)-adaptin interaction appeared less critical. Arrestin-2 mutants defective in both clathrin and beta(2)-adaptin binding functioned as effective dominant negatives in HEK293 cells and significantly attenuated beta(2)-adrenergic receptor internalization. These mutants should prove useful in better defining the role of arrestins in mediating receptor trafficking.  相似文献   

16.
17.
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.  相似文献   

18.
Desensitization of G protein-coupled receptors (GPCRs) involves the binding of members of the family of arrestins to the receptors. In the model system involving the visual GPCR rhodopsin, activation and phosphorylation of rhodopsin is thought to convert arrestin from a low to high affinity binding state. Phosphorylation of the M(2) muscarinic acetylcholine receptor (mAChR) has been shown to be required for binding of arrestins 2 and 3 in vitro and for arrestin-enhanced internalization in intact cells (Pals-Rylaarsdam, R., and Hosey, M. M. (1997) J. Biol. Chem. 272, 14152-14158). For the M(2) mAChR, arrestin binding requires phosphorylation at multiple serine and threonine residues at amino acids 307-311 in the third intracellular (i3) loop. Here, we have investigated the molecular basis for the requirement of receptor phosphorylation for arrestin binding. Constructs of arrestin 2 that can bind to other GPCRs in a phosphorylation-independent manner were unable to interact with a mutant M(2) mAChR in which the Ser/Thr residues at 307-311 were mutated to alanines. However, although phosphorylation-deficient mutants of the M(2) mAChR that lacked 50-157 amino acids from the i3 loop were unable to undergo agonist-dependent internalization when expressed alone in tsA201 cells, co-expression of arrestin 2 or 3 restored agonist-dependent internalization. Furthermore, a deletion of only 15 amino acids (amino acids 304-319) was sufficient to allow for phosphorylation-independent arrestin-receptor interaction. These results indicate that phosphorylation at residues 307-311 does not appear to be required to activate arrestin into a high affinity binding state. Instead, phosphorylation at residues 307-311 appears to facilitate the removal of an inhibitory constraint that precludes receptor-arrestin association in the absence of receptor phosphorylation.  相似文献   

19.
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.  相似文献   

20.
G protein-coupled receptors (GPCRs) must constantly compete for interactions with G proteins, kinases, and arrestins. To evaluate the interactions of these proteins with GPCRs in greater detail, we generated a fusion protein between the N-formyl peptide receptor and the G(alpha)(i2) protein. The functional capabilities of this chimeric protein were determined both in vivo, in stably transfected U937 cells, and in vitro, using a novel reconstitution system of solubilized components. The chimeric protein exhibited a cellular ligand binding affinity indistinguishable from that of the wild-type receptor and existed as a complex, when solubilized, containing betagamma subunits, as demonstrated by sucrose density sedimentation. The chimeric protein mobilized intracellular calcium and desensitized normally in response to agonist. Furthermore, the chimeric receptor was internalized and recycled at rates similar to those of the wild-type FPR. Confocal fluorescence microscopy revealed that internalized chimeric receptors, as identified with fluorescent ligand, colocalized with arrestin, as well as G protein, unlike wild-type receptors. Soluble reconstitution experiments demonstrated that the chimeric receptor, even in the phosphorylated state, existed as a high ligand affinity G protein complex, in the absence of exogenous G protein. This interaction was only partially prevented through the addition of arrestins. Furthermore, our results demonstrate that the GTP-bound state of the G protein alpha subunit displays no detectable affinity for the receptor. Together, these results indicate that complex interactions exist between GPCRs, in their unphosphorylated and phosphorylated states, G proteins, and arrestins, which result in the highly regulated control of GPCR function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号