首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune myasthenia gravis (EAMG) is an autoimmune disease in which antibodies to acetylcholine receptor (AChR) cause loss of AChR from muscle, thereby impairing neuromuscular transmission. Here we report the use of a hybrid molecule that contains ricin toxin, irreversibly coupled to AChR to specifically suppress the immune response to AChR in vitro. Lymph node cell cultures from rats with EAMG pretreated with ricin toxin-AChR conjugates exhibited suppressed T helper cell proliferation and B cell antibody synthesis in response to the subsequent addition of AChR. Nonspecific toxicity of the conjugates was measured by suppression of the T cell proliferative response to the mitogen concanavalin A and the antigen keyhole limpet hemocyanin (KLH), and B cell antibody production to KLH. We have evaluated different pretreatment conditions and ricin toxin covalently coupled to AChR in different molar ratios to optimize specific immunosuppression. By varying the number of ricin molecules covalently bound to AChR in the immunotoxin, we were able to minimize the nonspecific toxicity while still maintaining specific killing of AChR-reactive lymphocytes. Furthermore, B cells were more susceptible to specific killing than were the T cells. The specific immunosuppression was potentiated by performing the pretreatment with immunotoxin in the presence of chloroquine. Chloroquine raises lysosomal pH and probably delays the degradation of immunotoxin in the cell. It should be noted that ricin toxin was covalently coupled to AChR by using a novel, non-reducible reaction. These in vitro results suggest that it may be feasible to use immunotoxin molecules to specifically suppress this autoimmune response in vivo.  相似文献   

2.
Acetylcholine receptor (AChR)-immune lymph node cells were treated with Id-specific immunotoxin before their transfer and antigenic challenge in adoptive recipient rats. In contrast to untreated, AChR-immune lymph node cells that, when challenged, produced high titers of serum anti-AChR antibody, in vitro anti-Id-ricin A chain treatment significantly inhibited anti-AChR antibody responses upon adoptive transfer. The inhibition was specific in that control lymph node cells immune to keyhole limpet hemocyanin were unaffected and totally responsive after treatment by the same immunotoxin. Furthermore, evidence is presented by isoelectric focusing analysis that the anti-Id antibody preparation used in this study contains all of the specificities required to eliminate the entire spectrum of AChR-reactive B cell clones.  相似文献   

3.
The toxin A chain of ricin has been conjugated by a disulfide bond to a murine monoclonal antibody that recognizes the gp67kD antigen present on 95% of peripheral T lymphocytes. The immunotoxin retains both functions of its component parts: it binds to human peripheral blood lymphocytes, and it inhibits protein synthesis in a cellfree reticulocyte system. The immunotoxin has been evaluated for its ability to inhibit in vitro T lymphocyte transformation. In the presence of 20 mM NH4Cl, the immunotoxin decreases lymphocyte proliferation in response to phytohemagglutinin to less than 8% of untreated controls. The proliferative response in mixed lymphocyte culture and the development of allocytotoxic T cells is also dramatically inhibited by this immunotoxin. Monoclonal antibody alone does not inhibit these responses. Specificity of the immunotoxin has been established: the effect of the immunotoxin can be blocked by unconjugated monoclonal antibody, but not by a control monoclonal antibody that recognizes another T lymphocyte differentiation antigen or by a control monoclonal antibody that does not recognize human peripheral blood leukocytes. Treatment of human bone marrow cells with the immunotoxin preserves hematopoietic progenitor cells, as measured by granulocyte-macrophage, erythroid, and multipotential hematopoietic progenitor cell assays. These results indicate that an anti-pan T lymphocyte-ricin A chain immunotoxin is an effective agent against immunocompetent T lymphocytes in vitro, and may be an effective agent for use in clinical bone marrow transplantation.  相似文献   

4.
Purified acetylcholine receptor (AChR) covalently coupled to the catalytically toxic A chain of ricin has been used to selectively eliminate rat lymph node cells involved in in vitro anti-AChR antibody responses. The resulting inhibition was specific in view of the lack of such inhibition of anti-Keyhole limpet hemocyanin antibody responses. Furthermore, when fractionated B cell or T cell populations were treated with AChR-A chain, both populations were found to be sensitive to the specific cytotoxicity. However, T cell cytotoxicity required higher concentrations of the immunotoxin. Furthermore, when AChR-immune lymphocytes were treated with AChR-A chain in vitro, they became unable to mediate secondary adoptive transfer responses in vivo. The abrogation of the anti-AChR adoptive response correlated with the lack of muscle weakness characteristic of experimental autoimmune myasthenia gravis. Thus, it is possible, in principle, to eliminate clones of antigen-reactive lymphocytes with antigen-ricin A chain immunotoxins. This lets open the possibility of using such agents in immunotherapeutic approaches to autoimmune disease.  相似文献   

5.
Six different anti-HIV envelope antibodies and one irrelevant control antibody were coupled to ricin A chain and tested for their efficacy in inhibiting HIV tissue culture infections. The anti-HIV antibodies consisted of five monoclonals, three of murine and two of human origin, and one polyclonal preparation prepared by affinity purifying pooled serum antibodies from HIV-infected humans on rgp160. The binding specificity of the antibodies was defined by ELISA by using recombinant envelope proteins and synthetic peptides, and by flow cytometry on HIV-infected cells. The in vitro efficacy of the antibodies was tested by the abilities of the immunotoxins to inhibit protein synthesis in persistently infected cell lines and by their abilities to inhibit HIV production during both acute and persistent infection as measured with an HIV-specific focal immunoassay. The immunotoxins were tested against a panel of distinctly different HIV isolates. The results indicate the following: 1) A mAb to the immunodominant neutralizing loop was highly effective against homologous strains of HIV, but had no activity against heterologous HIV. 2) The efficacy of anti-gp41 mAb varied depending upon the epitope recognized and possibly the affinity of binding to gp41. 3) The polyclonal human anti-gp160 antibodies produced the immunotoxin with the broadest specificity for different HIV strains and the greatest specific activity. This is related to the polyclonal nature of the preparation rather than an increase in relative avidity of the antibody. 4) Activity of an immunotoxin is not a direct function of the binding of the antibody to the surface of infected cells. 5) The ability of an immunotoxin to halt the spread of infection through a tissue culture cell population is dependent upon the ability of the antibody to neutralize the virus as well as the activity of the toxin. Our data suggest that efficacious immunotoxins for the treatment of AIDS may be made with polyclonal anti-envelope antibodies derived from the serum of patients who have been infected with HIV or with appropriately chosen anti-gp41 antibodies.  相似文献   

6.
We studied an immunotoxin consisting of recombinant ricin A chain (rRA) conjugated to 454A12 MoAb, a monoclonal antibody which recognizes an epitope on the human transferrin receptor, and compared the ability of 454A12 MoAb-rRA immunotoxin to inhibit the growth of erythroid burst-forming units (BFU-e) and myeloid colony-forming units (CFU-c) with unconjugated 454A12 MoAb. A significant reduction in BFU-e colony growth was observed at 0.001 microgram/ml of 454A12 MoAb-rRA versus 0.1 microgram/ml of unconjugated 454A12 MoAb (p = 0.005). Comparison of the effects of 454A12 MoAb-rRA and 454A12 MoAb on myeloid colony development gave markedly different results. Unconjugated antibody had no effect on CFU-c colony growth; in contrast, 0.01 microgram/ml of 454A12 MoAb-rRA reduced the number of colonies from 139 per 1 X 10(5) to 75 per 1 X 10(5) cells plated (p = 0.0005). No myeloid progenitor colonies developed at 0.1 microgram/ml of immunotoxin. These observations suggest that 454A12 MoAb-rRA inhibits growth by a potent, ricin A chain-mediated toxic effect on any proliferating cells expressing transferrin receptors, whereas the 454A12 MoAb exerts a selective inhibitory effect primarily on erythroid progenitors by perturbing the transferrin cycle. While growth factor receptors expressed on hematopoietic cells represent promising targets for immunotoxin therapy, our data indicate that an immunotoxin could inhibit cellular proliferation by a different mechanism than the corresponding unconjugated MoAb. Depending on the antibody used, these differences may be important in trials using immunotoxins for in vivo treatment or in vitro purging of malignant hematopoietic cells.  相似文献   

7.
The influence of T cell specificity was evaluated with regard to its role in the antibody response against the acetylcholine receptor (AChR) and resulting AChR-dependent muscle dysfunction. The reactivity of immune Th cells was restricted to a small region of the AChR alpha-subunit (amino acid residues 100-116) reported to be highly immunogenic. T cells primed to this peptide were found to demonstrate significant proliferation when challenged in vitro with either the homologous peptide or the intact AChR. Adoptive transfer of the peptide-immune T cells into immunologically naive recipient rats followed by AChR challenge resulted in the production of anti-AChR antibodies very similar to those produced under the regulation of T cells immune to the entire intact AChR with regard to overall clonotypic heterogeneity (measured by IEF) and their ability to interfere with AChR-dependent muscle contraction. Interestingly, when the threonine at position 106 was substituted with a proline, the resulting peptide continued to be equally, if not exceedingly, capable of stimulating T cell-proliferative responses, but was found to be ineffective at stimulating the levels of anti-AChR antibodies necessary for producing neuromuscular dysfunction.  相似文献   

8.
Monoclonal cell lines synthesizing antibodies against partially purified acetylcholine receptor from human muscle (H.AChR) were produced. Eleven clones secreted antibodies against H.AChR. Four were obtained in ascitic form. Two of them have been exhaustively studied. Specificity and affinity for H.AChR were demonstrated. Cross-reactivity with mouse AChR was shown but not with torpedo or porcine AChR at the same concentration. Purified IgG injected intravenously provoked an obvious muscular weakness. Inhibition experiments on myasthenia gravis sera binding have demonstrated that monoclonal antibody specificity is directed against an antigenic determinant shared by human and mouse AChR.  相似文献   

9.
Human antibody responses to immunotoxin components were evaluated in 21 melanoma patients who were treated with XomaZyme-MEL, a murine monoclonal antimelanoma antibody-ricin A chain conjugate. Twenty of the 21 melanoma patients produced antibodies against ricin A chain, while 15 of 21 produced antibodies reactive with the murine monoclonal antibody component. Both IgM and IgG antibody responses were produced. Immunoglobulin responses were usually detected 1 to 2 weeks following initiation of therapy, with peak levels generally attained 2 to 4 weeks posttherapy. Titers of the anti-ricin A chain antibodies were generally higher than those of the antimurine monoclonal antibodies for the dose range tested. There was no clear correlation between the dose of immunotoxin administered and the antibody titer. By use of a competitive flow cytometry assay, antiidiotype responses were demonstrated in eight of 10 melanoma patients who had antimurine antibodies. Both the kinetics of appearance and the relative titers of the antiidiotype responses generally corresponded to the antimurine responses. The development of antimmunotoxin antibodies can reduce the therapeutic potential of immunotoxins through several mechanisms. The development of antibodies in a significant number of patients suggests that optimally effective, repeated courses of therapy will require some procedure for suppressing or abrogating the response against the immunotoxin.  相似文献   

10.
Genetically related susceptibility for experimental autoimmune myasthenia gravis was investigated in nine inbred strains of rats immunized with heterologous acetylcholine (AChR) from Torpedo californica. Wistar Munich and Fischer strain animals consistently developed severe, fatal disease associated with impaired neuromuscular transmission and increased sensitivity to low doses of curare. A lower incidence of disease was induced in Wistar Kyoto, ACI, Brown Norway, Buffalo, and Lewis strain animals. In contrast, Wistar Furth and Copenhagen strain animals were resistant to experimental autoimmune myasthenia gravis, electrophysiologic responses were normal, and animals were insensitive to curare. All strains of animals manifested equivalent amounts of serum antibody to AChR and total muscle AChR was reduced to the same extent in both resistant and susceptible animals. In contrast, the amount of antibody-bound AChR was greater in susceptible Wistar Munich animals than the amount observed in resistant Wistar Furth animals. These data suggest that impaired neurotransmission is correlated with the extent of antibody binding to the AChR. The discordance in the amount of antibody bound to the AChR of resistant and susceptible animals may result from heritable differences in antibody properties. Cross-breeding experiments with Wistar Munich and Wistar Furth animals show that resistance for development of experimental autoimmune myasthenia gravis is recessive and indicate that disease susceptibility is linked to one or two genetic loci.  相似文献   

11.
Treatment of normal mice with a mAb to CD4 (GK1.5) was explored as a means of inhibiting the antibody response to an immunotoxin. Three days of pretreatment with 200 micrograms of GK1.5 completely abrogated the primary antibody response to a 3-micrograms dose of a mutant diphtheria toxin conjugated to an anti-transferrin receptor antibody. The same dose and schedule of anti-CD4 antibody significantly reduced and delayed, but did not prevent, the anamnestic antitoxin response in animals that had been previously primed to the immunotoxin. Three daily injections of anti-CD4 antibodies followed by weekly doses of immunotoxin resulted in a 3-wk delay in the development of antitoxin antibodies, and the kinetics of the antitoxin response correlated with the kinetics of recovery of CD4+ T cells in the spleen and lymph nodes. The antitoxin response to repeated doses of immunotoxin was completely abrogated when anti-CD4 antibodies were given every 2 wk throughout the course of immunotoxin treatment. Thus, transient depletion of Th cells during treatment can block the immune response to an immunotoxin. There was no evidence of tolerance induction with this regimen.  相似文献   

12.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

13.
Monoclonal antibody 45-2D9 recognizes a 74K Mr glycoprotein determinant on a c-Ha-ras oncogene-transfected cell line (45-342). An immunotoxin was made by conjugating this antibody to the A chain of ricin toxin (RTA). The immunotoxin could mediate essentially complete inhibition of leucine and thymidine incorporation by 45-342 cells prepared as single cell suspensions from tumors grown in vivo. Addition of ammonium chloride to the culture medium potentiated this inhibition, but the magnitude of this effect was dependent on incubation time and cell concentration. The immunotoxin effects were noted at concentrations 100-fold lower than similar effects caused by unconjugated RTA, and the 45-2D9 antibody had no effect in the assay system. Immunotoxins directed against antigens not expressed by 45-342 were not effective, and the 45-2D9 immunotoxin was not specifically toxic to other transfected cells not expressing the gp74 antigen. After a 72-hr incubation, lysis of 80% of the 45-342 cells was demonstrated by trypan blue exclusion. Complete inhibition of 45-342 colony formation was achieved at 10 days with a 10(-9) M concentration of the specific immunotoxin. These results indicate that an immunotoxin with specific reactivity towards an oncogene-transformed cell can be made, and that such cells derived from fresh tumors are susceptible to immunoconjugate-mediated toxicity.  相似文献   

14.
HIV-infected cells are selectively killed by an immunotoxin in which a truncated form of Pseudomonas exotoxin A is joined to the variable region of a broadly neutralizing antibody (3B3) that recognizes the viral envelope glycoprotein (Env). To improve the efficacy of this molecule, we used three-dimensional structural information and phage selection data to design 23 single and multiple point mutations in the antibody variable region sequences that contact Env. Substituting an aromatic residue for an aspartate in the third complementarity-determining region of V(H) increased the potency of the immunotoxin by approximately 10-fold in a cell-killing assay. Detailed analysis of one such mutant, N31H/Q100eY, revealed both a higher affinity for monomeric and cell surface Env and an increased stability against aggregation compared with the starting immunotoxin. Conversion to a disulfide-linked two-chain format further stabilized the protein. N31H/Q100eY retained the ability to bind to Env from multiple viral isolates, to inhibit Env-mediated cell fusion, and to limit spreading viral infection in peripheral blood mononuclear cells. Such site-directed mutants may increase the utility of immunotoxins for reducing or eradicating persistent HIV-1 infection in humans.  相似文献   

15.
Summary The antitumoral efficacy of various anti-CD5 immunotoxins, prepared with whole monoclonal antibody (mAb), F(ab)2 or Fab fragment linked to native ricin A-chain (RTA) or partially deglycosylated ricin A-chain (dRTA), was examined in vivo in ascitic nude mice bearing a large burden of Ichikawa human tumour cells. We first demonstrated that after systemic administration of IgG-RTA or F(ab)2-dRTA, the cytotoxic activity of immunotoxin molecules specifically bound to tumour cells was preserved. Secondly we showed, by using different immunotoxins with various targeting capacities, that their cytotoxic effect in vivo was related to the number of immunotoxin molecules bound per cell. However, even when antigen saturation was achieved after i.p. injection, the cytotoxic effect did not exceed 53% of the tumour burden. By contrast, when the immunotoxin was administered i.p. or i.v. with the enhancer monensin conjugated to human serum albumin and injected i.p., 90% of the tumour cells were killed. This potentiating effect was demonstrated even when the tumour localisation was as low as 5% of the saturation level. Such an effect could be completely prevented by addition of unconjugated monoclonal antibody, demonstrating the specificity of the immunotoxin-induced cytotoxicity in the presence of the enhancer. However this enhancement was demonstrated whatever the route of immunotoxin administration, i.p. or i.v., but was only observed when the enhancer was injected i.p. and not i.v.. These results emphasize the importance of optimizing the therapeutic course to improve the antitumoral efficacy of immunotoxins.  相似文献   

16.
An immunotoxin was synthesized with pokeweed antiviral protein and an IgG1 monoclonal antibody directed against human B and pre-B cells. The B43 murine monoclonal antibody does not react with normal human bone marrow precursor cells. The immunotoxin bound to all Burkitt's lymphoma cell lines that were tested but not to human peripheral blood T cells. The ability of antibody-toxin conjugate to inhibit human lymphoblast cell lines was checked in a clonogenic assay system. The immunotoxin in the presence of chloroquine elicited 5.8 logs of killing of Burkitt's lymphoma cells (B-ALL). The efficient inhibition of clonogenic growth of B-ALL cells was not affected by the presence of normal bone marrow cells. The immunotoxin was not very toxic to pluripotent stem cells; less than 50% of the stem cells were lost under conditions where 5.6 logs of clonogenic lymphoma cells were eliminated from a 100-fold excess of normal marrow cells. Further, when assayed by long-term human bone marrow cultures, immunotoxin treatment did not result in a significant loss of pluripotent precursor cells.  相似文献   

17.
We have examined the relationship of acetylcholine receptors (AChR) to the Mr 43,000 receptor-associated protein (43K) in the AChR clusters of cultured rat myotubes. Indirect immunofluorescence revealed that the 43K protein was concentrated at the AChR domains of the receptor clusters in intact rat myotubes, in myotube fragments, and in clusters that had been purified approximately 100-fold by extraction with saponin. The association of the 43K protein with clustered AChR was not affected by buffers of high or low ionic strength, by alkaline pHs up to 10, or by chymotrypsin at 10 micrograms/ml. However, the 43K protein was removed from clusters with lithium diiodosalicylate or at alkaline pH (greater than 10). Upon extraction of 43K, several changes were observed in the AChR population. Receptors redistributed in the plane of the muscle membrane in alkali-extracted samples. The number of binding sites accessible to an anti-AChR monoclonal antibody directed against cytoplasmic epitopes (88B) doubled. Receptors became more susceptible to digestion by chymotrypsin, which destroyed the binding sites for the 88B antibody only after 43K was extracted. These results suggest that in isolated AChR clusters the 43K protein covers part of the cytoplasmic domain of AChR and may contribute to the unique distribution of this membrane protein.  相似文献   

18.
We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.  相似文献   

19.
Antigenic modulation of acetylcholine receptor (AChR), i.e., acceleration of its internalization and degradation rate by antibody-cross-linking, is considered to be one of the two main causes of AChR loss in myasthenia gravis (MG). The majority of the antibodies to AChR are directed to the main immunogenic region (MIR) on the alpha-subunit of the receptor. We here examine the relative contribution of the anti-MIR antibody fraction (as well as of another fraction) to the antigenic modulation caused by MG patients' sera. Fab fragments of an anti-MIR monoclonal antibody (mAb) or a mAb to the beta-subunit (neither of which causes antigenic modulation) were allowed to shield their corresponding regions on the AChR on the mouse muscle cell line BC3H1. The 27 MG sera subsequently added thus bound to all other regions except to the protected one, and the resulting antigenic modulation was measured. The anti-MIR mAb protected the AChR by 68 +/- 16%. This is interpreted as the contribution to antigenic modulation of the anti-MIR antibody fraction in the human sera. This percentage correlated very well with the occurrence of the anti-MIR antibodies in the same sera. The anti-beta mAb gave only small protection of the AChR. No significant pattern differences were observed between sexes, early and recent onset of the disease, or high and low antibody titers. It is concluded that as far as it concerns the one of the pathogenic mechanisms in MG, i.e., the antigenic modulation, the MIR seems to be the main pathogenic region. The observation that a single mAb can efficiently protect the AChR in this system may prove to be of therapeutic interest.  相似文献   

20.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin and interleukin-2 therapy. It has been evidenced that VLS-inducing molecules share a three-amino acid consensus motif, (x)D(y), which may be responsible for initiating VLS. Here we have constructed a recombinant immunotoxin (SMFv-PE38KDEL) by genetically fusing PE38KDEL to a single-chain antibody derived from SM5-1 monoclonal antibody, which has a high specificity for melanoma, hepatocellular carcinoma and breast cancer. In order to eliminate VLS induced by this PE38KDEL-based immunotoxin, a panel of mutants were generated by changing amino acid residues adjacent to its three (x)D(y) motifs in the three-dimensional structure. One of the SMFv-PE38KDEL mutants, denoted as mut1, displayed a similar protein synthesis inhibitory in a reticulocyte lysate translation assay compared to the wild-type SMFv-PE38KDEL (wt). The in vitro cytotoxicity assay indicated that mut1 specifically killed SM5-1 binding protein-positive tumor cells, although its cytotoxicity was slightly less than wt. In contrast, mut1 was shown to be much weaker in inducing VLS in mice than wt. The LD50 values of wt and mut1 in mice were investigated with the result that the LD50 of mut1 was about tenfold higher than that of wt. The in vivo antitumor activity of wt and mut1 were also compared in tumor-bearing nude mice. Both wt and mut1 were effective in inhibiting the tumor growth but mut1 showed improved therapeutic efficacy. These studies suggest mut1 may be a novel PE-based immunotoxin with much less toxicity for clinical use. Hao Wang, Shuichuan Song and Geng Kou contributed equally to this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号