首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia, also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments. The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE) using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic interventions in gliobalstoma multiformae.   相似文献   

2.
The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions.  相似文献   

3.
The rate and capacity for chloroform (CF) and trichloroethylene (TCE) transformation by a mixed methanotrophic culture of resting cells (no exogenous energy source) and formate-fed cells were measured. As reported previously for TCE, formate addition resulted in an increased CF transformation rate (0.35 day-1 for resting cells and 1.5 day-1 for formate-fed cells) and transformation capacity (0.0065 mg of CF per mg of cells for resting cells and 0.015 mg of CF per mg of cells for formate-fed cells), suggesting that depletion of energy stores affects transformation behavior. The observed finite transformation capacity, even with an exogenous energy source, suggests that toxicity was also a factor. CF transformation capacity was significantly lower than that for TCE, suggesting a greater toxicity from CF transformation. The toxicity of CF, TCE, and their transformation products to whole cells was evaluated by comparing the formate oxidation activity of acetylene-treated cells to that of non-acetylene-treated cells with and without prior exposure to CF or TCE. Acetylene arrests the activity of methane monooxygenase in CF and TCE oxidation without halting cell activity toward formate. Significantly diminished formate oxidation by cells exposed to either CR or TCE without acetylene compared with that with acetylene suggests that the solvents themselves were not toxic under the experimental conditions but their transformation products were. The concurrent transformation of CF and TCE by resting cells was measured, and results were compared with predictions from a competitive-inhibition cometabolic transformation model. The reasonable fit between model predictions and experimental observations was supportive of model assumptions.  相似文献   

4.
Toxicokinetics of trichloroethylene (TCE) and tetrachloroethylene (PER) in culture medium and their toxicity to CHO-K1 cells were investigated by employing an in vitro vapor exposure system. Cells were cultured in a 60 mm petri dish with a 25 mm glass dish glued in the central area. TCE or PER was added to the central glass dish so that it would evaporate and dissolve in the surrounding medium in which cells were growing. The results showed that the concentration of TCE or PER in medium increased significantly within 20 min and then decreased very rapidly with time. After a 24 h incubation, the residual of TCE or PER in the medium was very low, but was displayed in a dose-dependent manner. Treatment of cells with either TCE or PER resulted in a dose- and time-dependent inhibition of cell growth. A significantly increase in the frequency of micronuclei (MN) was also observed with either TCE or PER treatment. Low doses of TCE (5-20 microl) or PER (1-5 microl) significantly enhanced the intracellular glutathione (GSH) level. However, the level of GSH rapidly decreased with higher doses of TCE (40-80 microl) or PER (10-20 microl). Depletion of cellular GSH showed no effect on the sensitivity of cells to TCE or PER treatment. GSH-conjugation has been proposed as an activation mechanism to account for the nephrotoxicity of TCE and PER, however the toxicity of TCE and PER to CHO-K1 cells is probably mediated through a distinct mechanism.  相似文献   

5.

Background

Previous attempts to isolate pluripotent cell lines from rat preimplantation embryo in mouse embryonic stem (ES) cell culture conditions (serum and LIF) were unsuccessful, however the resulting cells exhibited the expression of such traditional pluripotency markers as SSEA-1 and alkaline phosphatase. We addressed the question, which kind of cell lineages are produced from rat preimplantation embryo under “classical” mouse ES conditions.

Results

We characterized two cell lines (C5 and B10) which were obtained from rat blastocysts in medium with serum and LIF. In the B10 cell line we found the expression of genes known to be expressed in trophoblast, Cdx-2, cytokeratin-7, and Hand-1. Also, B10 cells invaded the trophectodermal layer upon injection into rat blastocysts. In contrast to mouse Trophoblast Stem (TS) cells proliferation of B10 cells occurred independently of FGF4. Cells of the C5 line expressed traditional markers of extraembryonic-endoderm (XEN) cells, in particular, GATA-4, but also the pluripotency markers SSEA-1 and Oct-4. C5 cell proliferation exhibited dependence on LIF, which is not known to be required by mouse XEN cells.

Conclusions

Our results confirm and extend previous findings about differences between blastocyst-derived cell lines of rat and mice. Our data show, that the B10 cell line represents a population of FGF4-independent rat TS-like cells. C5 cells show features that have recently become known as characteristic of rat XEN cells. Early passages of C5 and B10 cells contained both, TS and XEN cells. We speculate, that mechanisms maintaining self-renewal of cell lineages in rat preimplantation embryo and their in vitro counterparts, including ES, TS and XEN cells are different than in respective mouse lineages.  相似文献   

6.
We investigated whether the vessel-associated or endothelial cells within mouse embryo muscles can be a source of myogenic progenitors. Immunodetection of the stem cell surface markers, CD34 and Flk1, which are known to characterize the endothelial lineage, was done throughout the course of embryo muscle development. Both markers appeared to be restricted to the vessel-associated cells. On the basis of CD34 labeling, the reactive cells were purified by magnetic-bead selection from the limb muscles of 17-dpc desmin+/-LacZ mouse embryos and characterized by fluorescence-activated cell sorting. The cells in the selected CD34(+) population appeared to be approximately 95% positive for Flk1, but usually negative for CD45. We demonstrated that in vitro the CD34(+)/Flk1(+) population differentiated into endothelial cells and skeletal myofibers. When transplanted into mdx mouse muscle, this population displayed a high propensity to disperse within the recipient muscle, fuse with the host myofibers, and restore dystrophin expression. The marked ability of the embryonic muscle endothelial cells to activate myogenic program could be related to their somitic origin.  相似文献   

7.
Resident peritoneal mouse macrophages (non-dividing differentiated cells) were fused with mouse embryo fibroblasts (cells with a limited lifespan), NIH 3T3 and C3H 10T 1/2 cells ('immortal' cell lines) and SV 3T3 cells (a malignant cell line). DNA synthesis was investigated in the resultant heterokaryons. No inhibitory effect upon the transition of NIH 3T3 and mouse embryo fibroblasts nuclei to the S-phase was observed. C3H 10T 1/2, NIH 3T3 and SV 3T3 cells induced the reactivation of DNA synthesis in the macrophage nuclei in the heterokaryons. At the same time, no replication was detected in the macrophage nuclei after fusion with mouse embryo fibroblasts.  相似文献   

8.
The early mouse embryo contains a transient population of pluripotential stem cells which are responsible for generating both the foetal primordia and extraembryonic membranes. The characterisation of murine embryo stem cells and their isolation and propagation in culture provides the first instance in which pure populations of normal stem cells are directly accessible to the researcher. This marks a considerable advance in stem cell biology which may pave the way to the dissection of general stem cell control mechanisms and the identification of key regulatory factors. In addition, the genetic manipulation of embryo stem cells affords a unique avenue for experimental intervention in mammalian development and for controlled modification of the mouse germ line.  相似文献   

9.
Rabbit antiserum raised against teratocarcinoma embryoid bodies reacts with two extracellular, collagenase-resistant glycoproteins, PYS A and B, with molecular weights of approximately 350,000 and 220,000 daltons. The 220,000-dalton protein is distinguishable from fibronectin. The two proteins are synthesized and secreted into the medium in large amounts by the teratocarcinoma-derived parietal endoderm line PYS-1, and by normal parietal endoderm cells from the 10.5-day embryo. There was no detectable synthesis of PYS A and B by normal visceral endoderm cells isolated from the 10.5-day embryo, and only trace amounts of PYS A were synthesized by the teratocarcinoma-derived visceral endoderm line PSA5E and by mesodermal cells isolated from the visceral yolk sac. The two proteins therefore seem to be good biochemical markers for distinguishing parietal from visceral endoderm cells. Synthesis and secretion of PYS A and B could not be detected in undifferentiated embryonal carcinoma cells or in endoderm cells derived from them in the presence of retinoic acid.  相似文献   

10.
A breast cancer cell line developed in our laboratory (SUM-52PE) has a 12-fold amplification and high-level overexpression of the oncogene fibroblast growth factor receptor 2 (FGFR2). Previously, nine different alternatively spliced FGFR2 variants were isolated from this cell line. Overexpression of two variants that differ only in their carboxyl termini (C1 and C3) has been successfully accomplished in the immortalized human mammary epithelial cell line H16N2. FGFR2 expression led to the activation of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling cascades. Phosphorylation of the adapter protein FGF receptor substrate 2 is much more robust in the cells expressing the C3 variant of FGFR2 compared with the C1 variant. H16N2 cells expressing the full-length FGFR2 with the C1 or C3 carboxyl terminus were tested for their ability to grow under epidermal growth factor (EGF)-independent conditions, in soft agar, and for their ability to invade naturally occurring basement membranes and compared with the parental SUM-52PE cell line. All three cell lines grew under EGF-independent conditions and all were inhibited by the FGFR family specific inhibitor PD173074. The full-length FGFR2-C1 and FGFR2-C3 variants grew robustly in soft agar similar to the parental cell line SUM-52PE. However, cells expressing the C3 variant formed large colonies in agar in both insulin-free and EGF-free medium, whereas the cells expressing the C1 variant required insulin for growth. Soft agar growth was also inhibited by PD173074. Because SUM-52PE was developed from a metastatic breast carcinoma, the FGFR2-overexpressing cell lines were assessed for their ability to invade sea urchin embryo cell membranes. H16N2 cells expressing the C1 carboxyl terminus failed to invade sea urchin embryo cell membranes. By contrast, FGFR2-C3-expressing cells were as invasive as the SUM-52 breast cancer cells and erbB-2-overexpressing H16N2 cells. These results indicate that FGFR2 is a transforming oncogene in human mammary epithelial cells when expressed to levels similar to that found in breast cancer cells with FGFR2 gene amplification. Furthermore, the results suggest that different splice variants have differing transforming activities and that signaling from variants expressing the C3 carboxyl terminus results in more autonomous signaling, cell growth, and invasion.  相似文献   

11.
General belief in reproductive biology is that in most mammals female germ line stem cells are differentiated to primary oocytes during fetal development and oogenesis starts from a pool of primordial follicles after birth. This idea has been challenged previously by using follicle kinetics studies and demonstration of mitotically active germ cells in the postnatal mouse ovary (Johnson et al., 2004; Kerr et al., 2006; Zhang et al., 2008). However, the existence of a population of self-renewing ovarian germ line stem cells in postnatal mammals is still controversial (Eggan et al., 2006; Telfer et al., 2005; Gosden, 2004). Recently, production of offspring from a germ line stem cell line derived from the neonatal mouse ovary was reported (Zou et al., 2009). This report strongly supports the existence of germ line stem cells and their ability to expand in vitro. Recently, using a transgenic mouse model in which GFP is expressed under a germ cell-specific Oct-4 promoter, we isolated and generated multipotent cell lines from male germ line stem cells (Izadyar et al., 2008). Using the same strategy we isolated and derived cell lines from postnatal mouse ovary. Interestingly, ovarian germ line stem cells expanded in the same culture conditions as the male suggesting that they have similar requirements for their self-renewal. After 1 year of culture and many passages, ovarian germ line stem cells maintained their characteristics and telomerase activity, expressed germ cell and stem cell markers and revealed normal karyotype. As standard protocol for differentiation induction, these cells were aggregated and their ability to form embryoid bodies (EBs) was investigated. EBs generated in the presence of growth factors showed classical morphology and expressed specific markers for three germ layers. However, in the absence of growth promoting factors EBs were smaller and large cells with the morphological and molecular characteristics of oocytes were formed. This study shows the existence of a population of germ line stem cell in postnatal mouse ovary with multipotent characteristics.  相似文献   

12.
13.
A new approach to selection of lines of spontaneously transformed cells from the rat embryo "precrisis" cultures is described and their phenotypes at the initial and advanced stages during a long-term cultivation are characterized. The new selective system, referred to as 2T7, differs from the well known 3T3, 2T6 and 3T12 systems (Todaro, Green, 1963; Aaronson, Todaro, 1968). It is based on the maintenance of cultures under maximum cell densities. Such an approach facilitated and accelerated the start of the "crisis" stage (up to 3-8 passages) with the following gradual death of almost the whole normal senescent cell population, the colony formation resulting from the proliferation of single clonogenic cells. The frequency of clonogenic cells was about 6 x 10(-6). Six lines of spontaneously transformed cells from embryos of noninbred white rats (LRec-1--LRec-6) and one line from the Wistar embryos (LRec-7) were established. All the lines are characterized as diploid or near-tetraploid, with 1-4 different marker chromosomes formed from chromosome 7, as was reported elsewhere (Artsybasheva et al., 1988). The values of saturation densities and the time of population doubling for all the 7 lines differed from those for the rat embryo primary cultures cells. LRec-1--LRec-6 cells were unable to form the colonies in soft agar, while LRec-7 cells were able to grow in agar. The lines LRec became oncogenic for 1-2 day old rats after different periods of cultivation in vitro--from 3 to 7 months. The line LRec-7 Wistar appeared to be highly oncogenic from the very beginning after its selection. The histological analysis revealed that the LRec-1 tumors could be classified as polymorphocellular sarcoma. Up to 20 passages the LRec-1 line had numerous clonogenic cells (50-60%) in sparse cultures independently on the serum content in the media. By a 3-step selection of LRec-1 cells, on cultivation in media with lower serum contents (1-0.1-0%), a semisuspension of LRec-1sf subline (serum free) was established. This line was highly oncogenic for 1-2 day old rats, was easily cryopreserved and proliferated in the serum-free media for unlimited time, forming small colonies in agar. Thus, the new approach allows to establish with high effectiveness spontaneous lines of rat embryo cells with differently transformed phenotypes, i.e. preneoplastic and oncogenic ones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Colony-forming epithelial cells exfoliated in human milk have been examined by immunofluorescence using antibodies to cytokeratins (tonofilaments), and to high molecular weight desmosomal core proteins. The cells may be classified by their ability to form junctional complexes with their neighbours. Those deficient in desmosomal junctions, called D ? cells, grow into colonies of noncontiguous cells without desmosomes, and with a perinuclear network arrangement of cytokeratins. Junction forming, or D + cells, grow as contiguous cell sheets with abundant desmosomes and well developed bundles of tonofilaments. D ? cells may also segregate D + cells among their progeny yielding mixed clones, and a gradual increase in the overall number of D + cells during culture. Established D + cells have surface markers characteristic of mammary epithelium and are presumably derived by exfoliation of luminal cells of the alveoli or ducts which contain desmosomal junctions. D ? cells also possess mammary epithelial cell markers, but their origin is unknown. Medium conditioned by the Nil 8 line of hamster cells contains a junction-promoting activity that accelerates the rate, or frequency, of segregation of D + cells from D ? cells, so that milk cells grown in this medium predominently give closed colonies of D + cells. Medium conditioned by the MRC5 strain of human embryo lung cells, however, contains a junction-inhibiting activity, which prevents new junction formation and probably destroys existing junctions, so that cells in this medium mostly grow as open colonies of cells with D ? phenotype. It is hoped that studies with this experimental system will assist in the better understanding of normal and abnormal regulation of desmosomal junctions and their role in tissue integrity.  相似文献   

15.
A P19 embryonal carcinoma stem cell line carrying an insertion of the E. coli LacZ gene in an endogenous copy of the Pax-3 gene was identified. Expression of the Pax-3/LacZ fusion gene in neuroectodermal and mesodermal lineages following induction of differentiation by chemical treatments (retinoic acid and dimethylsulfoxide) was characterized using this line and is consistent with the previous localization of Pax-3 expression in the embryo to mitotically active cells of the dorsal neuroectoderm and the adjacent segmented dermomyotome. Pax-3/LacZ marked stem cells were also utilized as target cells in mixing experiments with unmarked P19 cells that had been differentiated by pretreatment with chemical inducers. Induction of beta-galactosidase and neuroectodermal markers in the target cells demonstrates that: (1) some differentiated P19 cell derivatives transiently express endogenous Pax-3- and neuroectoderm-inducing activities, (2) undifferentiated target stem cells respond to these activities even in the presence of leukemia inhibitory factor and (3) the endogenous activities can be distinguished from, and are more potent than, retinoic acid treatment in inducing neuroectoderm. These observations demonstrate that P19 embryonal carcinoma cells provide a useful in vitro system for analysis of the cellular interactions responsible for neuroectoderm induction in mammals.  相似文献   

16.
Expression of markers of differentiation was measured in a clone of the continuous cell line K562, derived originally from the cells of a patient with leukemia. Three of the markers were lineage specific, R18 for erythropoiesis and 80H.5 and My-1 for granulopoiesis. The fourth marker was the self-renewal capacity of clonogenic cells. The markers were measured as a function of time in pooled colonies from day 2 to day 12, and at a point of time in individual colonies. Evidence of an orderly pattern of marker appearance and disappearance was not seen. Rather, their expression appeared to occur at random during growth.  相似文献   

17.
In order to identify marker lines expressing GUS in various endosperm compartments and at different developmental stages, a collection of Arabidopsis thaliana (L.) Heynh. promoter trap lines were screened. The screen identified 16 lines displaying GUS-reporter gene expression in the endosperm, embryo and other seed organs. The distinctive patterns of GUS expression in these lines provide molecular markers for most cell compartments in the endosperm of Arabidopsis seeds at all developmental stages, and represent a valuable research tool for characterizing present and future Arabidopsis seed mutants. GUS expression patterns of these 16 lines are presented here. One line showed chalazal endosperm-specific GUS activity at the heart stage of embryo development. In six lines embryo-specific GUS activity was detected. Six lines exhibited GUS activity predominantly in the endosperm and embryo while two lines showed strong GUS activity in all seed organs. In one line GUS activity was detected in integuments and syncytial endosperm, while the GUS activity at the cotyledonary stage of the embryo was seed coat-specific. In addition, two funiculus markers and two silique markers expressed in the abscission zone and the guard cells are also presented.  相似文献   

18.
During embryogenesis, endothelial cells are a source of hematopoietic cells. Vascular endothelial (VE)-cadherin modulates adherens junctions between endothelial cells. How endothelial cells, integrated into the vascular bed via adherens junctions, give rise to free-floating hematopoietic cells has been examined. Contrary to our previous reports, in this report a cell type simultaneously expressing VE-cadherin and the hematopoietic marker CD45 was identified, without rigorous enzymatic dissociation of embryonic tissues. In spite of expressing several other endothelial markers such as endothelial cell nitrous oxide synthase (ECNOS) and MECA-32, this newly defined population failed to produce endothelial colonies when cultured on OP9 stroma, in direct contrast to enzymatically dissociated VE-cadherin+ cells. When isolated from 9.5 days post coitus (d.p.c.) embryos, VE-cadherin+ CD45+ cells generated erythroid, myeloid, but not B lymphoid, cells, also in contrast to VE-cadherin+ cells obtained by enzymatic dissociation. Runx1 null mutant embryos lacked this novel population. Collectively, these results introduce a novel VE-cadherin+ population within the developing embryo, which may represent an intermediate cell type in the transition of hemogenic endothelial cells into blood.  相似文献   

19.
Murine neural crest stem cells (NCSCs) are a multipotent transient population of stem cells. After being formed during early embryogenesis as a consequence of neurulation at the apical neural fold, the cells rapidly disperse throughout the embryo, migrating along specific pathways and differentiating into a wide variety of cell types. In vitro the multipotency is lost rapidly, making it difficult to study differentiation potential as well as cell fate decisions. Using a transgenic mouse line, allowing for spatio-temporal control of the transforming c-myc oncogene, we derived a cell line (JoMa1), which expressed NCSC markers in a transgene-activity dependent manner. JoMa1 cells express early NCSC markers and can be instructed to differentiate into neurons, glia, smooth muscle cells, melanocytes, and also chondrocytes. A cell-line, clonally derived from JoMa1 culture, termed JoMa1.3 showed identical behavior and was studied in more detail. This system therefore represents a powerful tool to study NCSC biology and signaling pathways. We observed that when proliferative and differentiation stimuli were given, enhanced cell death could be detected, suggesting that the two signals are incompatible in the cellular context. However, the cells regain their differentiation potential after inactivation of c-MycER(T). In summary, we have established a system, which allows for the biochemical analysis of the molecular pathways governing NCSC biology. In addition, we should be able to obtain NCSC lines from crossing the c-MycER(T) mice with mice harboring mutations affecting neural crest development enabling further insight into genetic pathways controlling neural crest differentiation.  相似文献   

20.
Defects in placental development lead to pregnancies at risk for miscarriage and intrauterine growth retardation and are associated with preeclampsia, a leading cause of maternal death and premature birth. In preeclampsia, impaired placental formation has been associated with alterations in a specific trophoblast lineage, the invasive trophoblast cells. In this study, an RT-PCR Trophoblast Gene Expression Profile previously developed by our laboratory was utilized to examine the lineage-specific gene expression of the rat Rcho-1 trophoblast cell line. Our results demonstrated that Rcho-1 cells represent an isolated, trophoblast population committed to the giant cell lineage. RT-PCR analysis revealed that undifferentiated Rcho-1 cells expressed trophoblast stem cell marker, Id2, and trophoblast giant cell markers. On differentiation, Rcho-1 cells downregulated Id2 and upregulated Csh1, a marker of the trophoblast giant cell lineage. Neither undifferentiated nor differentiated Rcho-1 cells expressed spongiotrophoblast marker Tpbpa or labyrinthine markers Esx1 and Tec. Differentiating Rcho-1 cells in hypoxia did not alter the expression of lineage-specific markers; however, hypoxia did inhibit the downregulation of the trophoblast stem cell marker Id2. Differentiation in hypoxia also blocked the induction of CSH1 protein. In addition, hypoxia inhibited stress fiber formation and abolished the induction of palladin, a protein associated with stress fiber formation and focal adhesions. Thus, Rcho-1 cells can be maintained as a proliferative, lineage-specific cell line that is committed to the trophoblast giant cell lineage on differentiation in both normoxic and hypoxic conditions; however, hypoxia does inhibit aspects of trophoblast giant cell differentiation at the molecular, morphological, and functional levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号