首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A number of trypsin inhibitors were isolated from wheat germs by affinity chromatography on immobilized trypsin, gel-filtration, and ion-exchange and reverse-phase chromatography. These inhibitors were classified into two groups, inhibitors I (Mr = 14,500) and II (Mr = 7,000), based on their molecular sizes. Inhibitors I and II inhibited bovine trypsin stoichiometorically at an enzyme to inhibitor ratio of 2 and 1, respectively. Sequence analysis of these inhibitors indicated a high degree of homology and that inhibitors I had a duplicated structure of inhibitors II. They are highly homologous to double-headed proteinase inhibitors (Bowman-Birk inhibitors) of Leguminosae plants. Inhibitors II are the first example of single-headed inhibitor corresponding to one inhibitory domain of the Bowman-Birk type double-headed inhibitors, which suggests that inhibitors II are relic of an ancestral single-headed inhibitor before the gene-duplication that led to the formation of present-day Bowman-Birk type inhibitors.  相似文献   

2.
The first discovered naturally occurring inhibitor of de novo sphingolipid biosynthesis was fumonisin B1. There are now 11 identified fungal inhibitors of ceramide synthase or 'fumonisin B1-like' compounds. With the exception of the australifungins, all other fungal ceramide synthase inhibitors are structurally sphingoid-like. There are several recently discovered fungal inhibitors of another enzyme in the de novo sphingolipid biosynthesis pathway: serine palmitoyltransferase (SPT). One of the SPT inhibitors is named ISP-I. While ceramide synthase inhibitors are toxic to animals, plants and fungi, the SPT inhibitors are not known to cause animal or plant disease, but are potent inhibitors of fungal growth. Very little is known about their toxicity in animals. There are at least 24 fungal SPT inhibitors produced by a variety of fungi. Given that the fungal inhibitors of sphingolipid biosynthesis are chemically and biologically diverse, two bioassays have been developed to screen for fumonisin-like or ISP-I-like activity in naturally contaminated products or fungal culture materials. These bioassays are based on the changes in free sphingoid base concentration that occur when the ceramide synthase or SPT are inhibited. The bioassays have the advantage that they are functionally rather than chemically specific and thus will detect ceramide synthase and SPT inhibitors regardless of their chemical structure.  相似文献   

3.
刘云杨  蒋帅  李谦  孔毅 《生物工程学报》2021,37(11):3988-4000
Kunitz型丝氨酸蛋白酶抑制剂是一类普遍存在的蛋白酶抑制剂,在体内各项生命活动中扮演着重要角色。这类抑制剂结构稳定且富有特色,通常具有一个或几个串联存在的Kunitz结构域,能够以类似底物的方式与丝氨酸蛋白酶结合,从而抑制酶的活性。在功能方面,Kunitz型丝氨酸蛋白酶抑制剂参与凝血和纤维蛋白溶解、肿瘤免疫、炎症调节以及抵抗细菌、真菌感染等过程。文中就Kunitz型丝氨酸蛋白酶抑制剂研究进展作一综述,为新型Kunitz型丝氨酸蛋白酶抑制剂的开发提供研究思路。  相似文献   

4.
The review deals with directed synthesis of specific enzyme inhibitors. They are classified within the framework of the mechanistic approach, namely, stable analogues of substrates, which form enzyme complexes mimicking the Michaelis complex or those which influence the chemical stages of enzyme catalysis; conformational inhibitors; substrate analogues participating in enzyme reactions and producing modified products; suicide inhibitors; stage inhibitors (inhibitors influencing certain stages of enzyme reaction); transition state analogues; multisubstrate analogues and collected substrates. Types of chemical modification used in synthesis of the specific inhibitors are discussed. Some possibilities of the quantity structure-activity relationship methods, computer modelling and molecular graphics in designing the optimal structure of inhibitors are mentioned.  相似文献   

5.
The members of the Pacifastin family are serine protease inhibitors found in insects and crustacean. They are either small inhibitors (made of one consensus cysteine-rich motif) or proteins (4-9 motifs). Some of these inhibitors are characterized by a species selectivity for the trypsin inhibition. Structural data discriminate the small inhibitors that apparently look very similar into two groups. Interestingly, the inhibitors that display species selectivity fall in the same structural group.  相似文献   

6.
随着对HIV进入细胞过程的了解,各种进入抑制剂相继问世,目前主要有三大类:吸附抑制剂、辅助受体抑制剂和融合抑制剂.对其中具有代表性的进入抑制剂研究进展进行了介绍,一些进入抑制剂已经进入到了临床试验阶段,其中融合抑制剂T20在2003年便被FDA批准可同其他ARTs联合用于治疗HIV感染者,CCR5拮抗剂Maraviro...  相似文献   

7.
抑制剂在氨氧化微生物研究中的应用   总被引:1,自引:0,他引:1  
杨韦玲  胡佳杰  胡宝兰 《微生物学报》2018,58(10):1722-1731
在氨氧化微生物的相关研究中经常使用各类抑制剂,包括针对硝化作用的抑制剂和针对微生物生长的抑制剂。自发现氨氧化古菌以来,人们在氨氧化细菌抑制剂的基础上重新筛选和使用不同的抑制剂来满足氨氧化微生物研究的需求。抑制剂既可以加速氨氧化古菌的富集,也可以帮助研究者区分古菌与细菌对硝化作用的贡献以及它们自身合成代谢能力的差别。本文综述了各类抑制剂的使用浓度和抑制效果,包括双氰胺(DCD)、3,4-二甲基吡啶磷酸盐(DMPP)、丙烯基硫脲(ATU)等传统抑制剂,乙炔和辛炔等炔烃类抑制剂,一氧化氮清除剂以及抗生素等对氨氧化微生物的活性和生长有特异性或通用抑制能力的抑制剂。通过对氨氧化微生物抑制剂的归纳总结,可为氨氧化微生物研究过程中抑制剂的选择提供参考。  相似文献   

8.
1. Natural proteinase inhibitors are divided into polysaccharides, plasma proteinase inhibitors and natural non-plasma inhibitors. 2. Polysaccharides are antithrombin-III and heparin co-factor-II dependent or independent regarding their biological activity. Knowledge of the inhibitory mechanism at a molecular level was gained by the study of heparin. 3. Antithrombin-III, heparin-co-factor-II and alpha 2-macroglobulin are the most important plasma proteinase inhibitors involved in coagulation. alpha 2-macroglobulin has a particular inhibitory mechanism. 4. Non-plasma proteinase inhibitors were isolated from many species. They inhibit mainly the contact activation and fibrinolysis. 5. The evolutionary relationships are poorly understood.  相似文献   

9.
The discovery of new templates and their subsequent elaboration to clinically useful receptor tyrosine kinase (RTK) inhibitors continues to be an important issue. RTKs are a class of enzymes responsible for the activation of different cellular signal transduction cascades. The majority of the known small molecules RTK inhibitors are ATP-competitive and they are multiple targeted inhibitors. We describe here serotonin derivatives as a new class of multiple targeted RTK inhibitors. In contrast to most other RTK inhibitors they act via a non-ATP-competitive (allosteric) mechanism. Furthermore, they are able to inhibit the proliferation of HUVE cells, fibroblasts and two cancer cell lines.  相似文献   

10.
A rapid purification procedure for large scale preparations of yeast proteinase B inhibitors 1 and 2 (IB1 and IB2) is described. By disc gel electrophoresis, amino acid analysis, and end-group determinations, each of the inhibitors is homogeneous. Both inhibitors are polypeptides with molecular weights of 8,500, containing 74 residues. No components other than amino acids could be detected. There is no significant difference in the amino acid compositions of the two inhibitors as analyzed after acid hydrolysis. Both polypeptides are characterized by the total absence of arginine, tryptophan, and sulfur-containing amino acid residues. The proteinase B inhibitors of yeast, therefore, differ fundamentally from proteinase inhibitors of many other organisms, which generally contain a large number of disulfide bridges. Both proteinase B inhibitors have threonine as the NH2-terminal residue and -Val-His-Thr-Asn-COO- as the COOH-terminal sequence. Comparison of peptide maps after tryptic digestion reveals that the two inhibitors differ definitely in only a few tryptic peptides. The inhibitors are rapidly inactivated by digestion with carboxypeptidase A from bovine pancreas at pH 8.5. Inactivation occurs stoichiometrically with the release of threonine, the penultimate residue at the COOH-terminal end of both inhibitors.  相似文献   

11.
Poly (ADP‐ribose) polymerase (PARP) inhibitors have provided great clinical benefits to ovarian cancer patients. To date, three PARP inhibitors, namely, olaparib, rucaparib and niraparib have been approved for the treatment of ovarian cancer in the United States. Homologous recombination deficiency (HRD) and platinum sensitivity are prospective biomarkers for predicting the response to PARP inhibitors in ovarian cancers. Preclinical data have focused on identifying the gene aberrations that might generate HRD and induce sensitivity to PARP inhibitors in vitro in cancer cell lines or in vivo in patient‐derived xenografts. Clinical trials have focused on genomic scar analysis to identify biomarkers for predicting the response to PARP inhibitors. Additionally, researchers have aimed to investigate mechanisms of resistance to PARP inhibitors and strategies to overcome this resistance. Combining PARP inhibitors with HR pathway inhibitors to extend the utility of PARP inhibitors to BRCA‐proficient tumours is increasingly foreseeable. Identifying the population of patients with the greatest potential benefit from PARP inhibitor therapy and the circumstances under which patients are no longer suited for PARP inhibitor therapy are important. Further studies are required in order to propose better strategies for overcoming resistance to PARP inhibitor therapy in ovarian cancers.  相似文献   

12.
Protein kinases are recognized as important drug targets due to the pivotal roles they play in human disease. Many kinase inhibitors are ATP competitive, leading to potential problems with poor selectivity and significant loss of potency in vivo due to cellular ATP concentrations being much higher than K(m). Consequently, there has been growing interest in the development of ATP-noncompetitive inhibitors to overcome these problems. There are challenges to identifying ATP-noncompetitive inhibitors from compound library screens because ATP-noncompetitive inhibitors are often weaker and commonly excluded by potency-based hit selection criteria in favor of abundant and highly potent ATP-competitive inhibitors in screening libraries. Here we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for protein kinase cyclin-dependent kinase 4 (CDK4) and the identification of ATP-noncompetitive inhibitors by high-throughput screening after employing a strategy to favor this type of inhibitors. We also present kinetic characterization that is consistent with the proposed mode of inhibition.  相似文献   

13.
Substrates of HIV-1 protease are classified into three groups (A, B and C) based on the amino acid residues present at P1' and P2' sites. Replacement of the scissile amide bond by phenylnorstatine in representative substrate analog sequences from class A, B and C, yielded inhibitors of HIV-1 protease. Of the twelve inhibitors synthesized in this series, class C substrate analog inhibitors are more potent inhibitors (Ki's 3.3-24 microM) than either class A or class B inhibitors. In this series of inhibitors, the (2S,3S) isomer of phenylnorstatine is preferred over the other isomers as a "transition state element" for design of inhibitors of HIV-1 protease.  相似文献   

14.
Various methods are used to remove nonspecific inhibitors from sera before titering viral hemagglutination-inhibiting antibodies. These methods have several undesirable features; some are tedious and time-consuming, some remove antibody along with nonspecific inhibitors, and different techniques are usually required to remove the nonspecific inhibitors for different viruses. This communication describes a single method that uses diethylaminoethyl-Sephadex to extract the immunoglobulin G antibodies for several viruses from nonspecific inhibitors. The procedure is fast, simple to perform, and removed the nonspecific inhibitors for influenza, Western equine encephalitis, dengue-2, and rubella viruses.  相似文献   

15.
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.  相似文献   

16.
We report the synthesis of biodegradable polyvalent inhibitors of anthrax toxin based on poly-L-glutamic acid (PLGA). These biocompatible polyvalent inhibitors are at least 4 orders of magnitude more potent than the corresponding monovalent peptides in vitro and are comparable in potency to polyacrylamide-based inhibitors of anthrax toxin assembly. We have elucidated the influence of peptide density on inhibitory potency and demonstrated that these inhibitory potencies are limited by kinetics, with even higher activities seen when the inhibitors are preincubated with the heptameric receptor-binding subunit of anthrax toxin prior to exposure to cells. These polyvalent inhibitors are also effective at neutralizing anthrax toxin in vivo and represent attractive leads for designing biocompatible anthrax therapeutics.  相似文献   

17.
Protection from tumor necrosis factor cytotoxicity by protease inhibitors   总被引:6,自引:0,他引:6  
Tumor necrosis factor (TNF) is cytocidal for human and murine cells when protein synthesis is inhibited by cycloheximide, but some protease inhibitors completely protect these cells from TNF cytotoxicity. Inhibitors of chymotrypsin-like proteases are active at lower concentrations than inhibitors of trypsin-like proteases. Both irreversible inhibitors, such as alkylating compounds, and reversible inhibitors, such as substrates of proteases, protect cells from the cytocidal activity of TNF. This protection is most effective when the cells are pretreated with these inhibitors before addition of TNF. When the protease inhibitors are removed, the cells gradually lose resistance to TNF cytotoxicity. The inhibitors do not interfere with the functioning of TNF-receptor complexes, since SK-MEL-109 melanoma cells treated with a protease inhibitor synthesize a TNF-induced protein. These findings suggest that a protease in involved in the cytocidal action of TNF.  相似文献   

18.
植物蛋白酶抑制剂在植物抗虫与抗病中的作用   总被引:13,自引:0,他引:13  
综述了植物蛋白酶抑制剂抗虫与抗病作用的研究进展.蛋白酶抑制剂广泛存在于植物体内,与植物抗虫抗病密切相关.植物蛋白酶抑制剂能抑制昆虫肠道蛋白酶,使昆虫生长发育缓慢,甚至死亡.但取食蛋白酶抑制剂后,昆虫能迅速分泌对抑制剂不敏感的蛋白酶,而使蛋白酶抑制剂无效.食物蛋白的含量和质量也影响植物蛋白酶抑制剂的抗虫效果.病原菌的感染能诱导植物产生蛋白酶抑制剂,诱导产生的蛋白酶抑制剂能抑制病原菌的生长.  相似文献   

19.
RNases are important enzymes of cell metabolism, influencing gene expression, affecting cell growth and differentiation, and participating in cell defense against pathogens and induction of apoptosis. Since RNases mostly occur in complex with their inhibitors in the cell, the inhibitors also play a role in the above processes. The review considers natural protein RNase inhibitors of animals, plants, and bacteria, as well as synthetic low-molecular-weight inhibitors. Special emphasis is placed on the prospective use of RNase inhibitors in the therapy of cancer and allergy. While RNases are widespread, the number of the available natural and synthetic inhibitors is limited. A pressing problem is to design highly effective low-molecular-weight inhibitors of the RNase activity of angiogenin and eosinophil-associated RNases for anticancer and antiallergy therapy.  相似文献   

20.
Protein inhibitors of proteases are widespread in nature. They are found in many sources, such as seeds, blood, eggs, and in many types of cells and tissues. Many physiological roles have been attributed to the protein inhibitors. Germination, wound healing, blood clotting, angiogenesis, etc., are some of the normal physiological activities in which protein inhibitors of proteases are involved. Lung destruction during emphysema and cartilage breakdown due to inflammation are two of the pathological conditions in which deficiency of protein inhibitors contributes to tissue breakdown by proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号