首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum (Al) partitioning in intact roots of wheat (Triticum aestivum L.) cultivars that differ in sensitivity to Al was investigated. Roots of intact seedlings were exposed to Al for up to 24 hours and distribution of Al was assessed visually by hematoxylin staining or by direct measurement of concentration of Al by atomic absorption spectrophotometry or ion chromatography. Major differences in Al accumulation between Al-tolerant (Atlas 66) and Al-sensitive (Tam 105) cultivars were found in the growing regions 0 to 2 and 2 to 5 millimeters from the root apex. Al content was 9 to 13 times greater in the 0 to 2 millimeters root tips of cv Tam 105 than in the tips of cv Atlas 66 when exposed to 50 micromolar Al for 19 to 24 hours. The oxidative phosphorylation inhibitor carbonyl cyanide m-chlorophenylhydrazone and the protein synthesis inhibitor cycloheximide increased Al uptake by intact root tips of cv Atlas 66. Also, loss of Al from the roots of both cultivars was measured after the roots were “pulsed” with 50 micromolar Al for 2 hours and then placed in an Al-free nutrient solution for 6 hours. The 0 to 2 millimeter root tips of cv Tam 105 lost 30% of the absorbed Al, whereas the tips of cv Atlas 66 lost 60%. In light of these results, we conclude that the differential Al sensitivity in wheat correlates with the concentration of Al in the root meristems. The data support the hypothesis that part of the mechanism for Al tolerance in wheat is based on a metabolism-dependent exclusion of Al from the sensitive meristems.  相似文献   

2.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

3.
The effects of aluminum (Al) exposure on intact root respiration of an Al-sensitive (Scout-66) and an Al-tolerant (Atlas-66) cultivar of Triticum aestivum were investigated. Exposure to a wide range of Al concentrations (0–900 μmol) for 4 days stimulated respiration along the energy-conserving cytochrome pathway in both cultivars and increased the ratio of maintenance respiration to growth respiration. The maximum rate of Scout-66 root respiration occurred after exposure to 100–200 μmol Al. Atlas-66 root respiration peaked after exposure to 300–400 μmol Al. Similarly, calculations of theoretical adenosine 5'-triphosphate (ATP) production indicated that maximum daily rate of ATP production also increased upon exposure to Al in both cultivars, with peak ATP production occurring during peak respiration. Maximum root respiration rates in both cultivars were related to the Al concentration that inhibited root growth. Temporal exposure to 200 μmol Al quickly stopped root growth and stimulated cytochrome pathway respiration in Scout-66 after 4 days. Atlas-66 root growth and respiration were unaffected by 200 μmol Al. These results suggest that Al exposure imposes a demand for additional metabolic energy. A model describing Al effects on root respiration is presented  相似文献   

4.
BACKGROUND AND AIMS: As with other crop species, Al tolerance in rice (Oryza sativa) is widely different among cultivars, and the mechanism for tolerance is unknown. The Ca2+-displacement hypothesis, that is, Al displaces Ca2+ from critical sites in the root apoplast, was predicted to be the essential mechanism for causing Al toxicity in rice cultivars. If displacement of Ca is an essential cause of Al toxicity in rice, Al toxicity may show the same trend as toxicities of elements such as Sr and Ba that are effective in displacing Ca. METHODS: The interactive effects of Al, Ca, Sr and Ba on root elongation of rice cultivars with different Al tolerances were evaluated in hydroponic culture. Al and Ca accumulation in root tips was also investigated. KEY RESULTS AND CONCLUSIONS: Not only Al but also Sr and Ba applications inhibited root growth of rice cultivars under low Ca conditions. As expected, rice cultivars more tolerant of Sr and Ba were also tolerant of Al (japonica > indica). Although Mg application did not affect Sr or Ba toxicity, Mg alleviated Al toxicity to the same level as Ca application. In addition, Ca application decreased the Al content in root tips without displacement. These results suggest that Ca does not have a specific, irreplaceable role in Al toxicity, unlike Sr and Ba toxicities. Alleviation of Al toxicity with increasing concentrations of Ca in rice cultivars is due to increased ionic strength, not due to decreased Al activity. The difference in Al tolerance between indica and japonica cultivars disappears under high ionic strength conditions, suggesting that different electrochemical characteristics of root-tip cells are related to the significant difference in Al tolerance under low ionic strength conditions.  相似文献   

5.
The geometric and energetic characteristics of root surfaces of two wheat (Triticum L.) varieties, Al tolerant (Inia 66/16) and Al sensitive (Henika), were estimated from experimental water vapor adsorption–desorption data. Roots stressed for around 1 week at pH 4 without and with a toxic aluminium level (0.741 mol m–3) were studied at the tillering and shooting stages. Roots grown continuously at pH 7 were taken as control. The surface properties of the pH 4 stressed roots were apparently the same as those of the control roots whatever the root age. For the roots of both varieties, the surface area and total micropore volume increased markedly after aluminium treatment. The average micropore radius increased significantly for the sensitive wheat, whereas it increased only slightly for the resistant one. Under Al treatment the number of large pores increased while small pores were fewer for both plants, indicating a possible alteration of the build-up of root tissue. The root surface pores were fractal. The fractal dimension of the sensitive wheat roots decreased under Al treatment, whereas for the resistant wheat this remained apparently unchanged. The adsorption energy distribution functions had different shapes for the sensitive and the resistant wheat varieties: the sensitive variety had greater number of high energy adsorption centers, which implies that the root tolerance on Al stress may be connected with lower polarity of the surface.  相似文献   

6.
Aluminum (Al) toxicity is a major constraint for wheat production in acidic soils. An Al resistance gene on chromosome 4DL that traces to Brazilian wheat has been extensively studied, and can provide partial protection from Al damage. To identify potentially new sources of Al resistance, 590 wheat accessions, including elite wheat breeding lines from the United States and other American and European countries, landraces and commercial cultivars from East Asia, and synthetic wheat lines from CIMMYT, Mexico, were screened for Al resistance by measuring relative root elongation in culture with a nutrient solution containing Al, and by staining Al-stressed root tips with hematoxylin. Eighty-eight wheat accessions demonstrated at least moderate resistance to Al toxicity. Those selected lines were subjected to analysis of microsatellite markers linked to an Al resistance gene on 4DL and a gene marker for the Al-activated malate transporter (ALMT1) locus. Many of the selected Al-resistant accessions from East Asia did not have the Al-resistant marker alleles of ALMT1, although they showed Al resistance similar to the US Al-resistant cultivar, Atlas 66. Most of the cultivars derived from Jagger and Atlas 66 have the Al-resistant marker alleles of ALMT1. Cluster analysis separated the selected Al-resistant germplasm into two major clusters, labeled as Asian and American–European clusters. Potentially new germplasm of Al resistance different from those derived from Brazil were identified. Further investigation of Al resistance in those new germplasms may reveal alternative Al-resistance mechanisms in wheat. Electronic supplementary material The online version of this article (doi:contains supplementary material, which is available to authorized users. Responsible Editor: Thomas B. Kinraide.  相似文献   

7.
8.
Seventy‐one cultivars of sweet sorghum (Sorghum bicolor L.) were screened for aluminium (Al) tolerance by measuring relative root growth (RRG). Two contrasting cultivars, ROMA (Al tolerant) and POTCHETSTRM (Al sensitive), were selected to study shorter term responses to Al stress. POTCHETSTRM had higher callose synthase activity, lower β‐1,3‐glucanase activity and more callose deposition in the root apices during Al treatment compared with ROMA. We monitored the expression of 12 genes involved in callose synthesis and degradation and found that one of these, SbGlu1 (Sb03g045630.1), which encodes a β‐1,3‐glucanase enzyme, best explained the contrasting deposition of callose in ROMA and POTCHETSTRM during Al treatment. Full‐length cDNAs of SbGlu1 was prepared from ROMA and POTCHETSTRM and expressed in Arabidopsis thaliana using the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Independent transgenic lines displayed significantly greater Al tolerance than wild‐type plants and vector‐only controls. This phenotype was associated with greater total β‐1,3‐glucanase activity, less Al accumulation and reduced callose deposition in the roots. These results suggest that callose production is not just an early indicator of Al stress in plants but likely to be part of the toxicity pathway that leads to the inhibition of root growth.  相似文献   

9.
Studies of Al partitioning and accumulation and of the effect of Al on the growth of intact wheat (Triticum aestivum L.) roots of cultivars that show differential Al sensitivity were conducted. The effects of various Al concentrations on root growth and Al accumulation in the tissue were followed for 24 h. At low external Al concentrations, Al accumulation in the root tips was low and root growth was either unaffected or stimulated. Calculations based on regression analysis of growth and Al accumulation in the root tips predicted that 50% root growth inhibition in the Al-tolerant cv Atlas 66 would be attained when the Al concentrations were 105 [mu]M in the nutrient solution and 376.7 [mu]g Al g-1 dry weight in the tissue. In contrast, in the Al-sensitive cv Tam 105, 50% root growth inhibition would be attained when the Al concentrations were 11 [mu]M in the nutrient solution and 546.2 [mu]g Al g-1 dry weight in the tissue. The data support the hypotheses that differential Al sensitivity correlates with differential Al accumulation in the growing root tissue, and that mechanisms of Al tolerance may be based on strategies to exclude Al from the root meristems.  相似文献   

10.
The objective of this study was to determine whether a series of Kenyan bread wheat cultivars differed in tolerance to aluminum toxicity. Fourteen Kenyan wheat cultivars representing current and former widely grown cultivars of diverse pedigree origin, and two control cultivars, Maringa (Al-tolerant) and Siete Cerros (Al-susceptible), were tested in solution cultures with 0 (control), 148, 593, and 2370 M Al at pH 4.6. Highly significant (p0.01) differences in seedling growth were observed among cultivars for root mass, root length and root tolerance index (RTI). Significant (p0.05) cultivar × treatment interactions were observed for root mass and RTI. All characters were negatively affected by increased Al concentration, with root length and root mass being affected the most. RTI is a commonly used index which measures the relative performance of individual cultivars with and without aluminum stress. High levels of tolerance to Al were identified in the Kenyan cultivars by evaluating RTI with this simple nutrient solution technique. Romany and Kenya Nyumbu had RTI values approaching those of the Al tolerant Brazilian cultivar Maringa, a spring wheat standard that has been used for high Al tolerance.  相似文献   

11.
Twenty winter cultivars of Triticum aestivum L. (wheat) were grown in solution culture with and without aluminum (Al) (74 μM, 2.0 mg L-1) for 14 days. Exposure to Al increased root growth of the most tolerant cultivar, while both root and shoot growth were depressed in all other cultivars. On the basis of a root tolerance index (RTI = weight of roots grown with Al/weight of roots grown without Al), cultivar tolerance to Al ranged 9-fold, from 0.13 ± 0.01 to 1.16 ± 0.10. Symptoms of Al toxicity were most evident on roots. Aluminum-affected roots were relatively short and thick and had numerous undeveloped laterals. Leaves of some cultivars showed chlorosis resembling iron deficiency, and others showed purple stems typical of phosphate deficiency. Plants of all cultivars grown with and without Al depressed the pH of nutrient solutions, presumably until NH4+ was depleted, at which point the pH increased. Cultivar tolerance, expressed both as the root tolerance index and a shoot tolerance index, was negatively correlated with the negative log of the mean hydrogen ion (H+) concentration, the minimum pH, and the slope of the pH decline, each calculated from pH data collected during the first 9 days of the experimental period before any sharp rises in pH occurred. These results are consistent with the hypothesis that the Al tolerance of a given cultivar is a function of its ability to resist acidification of the nutrient solution and hence to limit the solubility and toxicity of Al.  相似文献   

12.
To further elucidate the mechanisms of differential genotypic tolerance to Al, plasma membrane (PM) vesicles were isolated from whole roots, root tips, and tipless roots of Al3+-sensitive and Al3+-tolerant cultivars (cv) of wheat (Triticum aestivum L. cv Scout 66 and cv Atlas 66, respectively). Vesicles from cv Scout root tips sorbed more Al than vesicles prepared from any other source. The intrinsic surface-charge density of vesicles isolated from cv Scout was 26% more negative than vesicles from cv Atlas (-37.2 versus -29.5 millicoulombs m-2). Growth experiments indicated that cv Scout is slightly more sensitive to La3+ than is cv Atlas, that the cultivars are equally sensitive to H+, and that cv Atlas is slightly more sensitive to SeO42-. The difference in sensitivity to Al3+ was very large; for a 50% inhibition, a 16-fold greater activity of Al3+ was required for cv Atlas. Using a newly developed Gouy-Chapman-Stern model for ion sorption to the PM together with growth-response curves, we estimate that the difference in surface-charge density can account for the slightly greater sensitivity of cv Scout to cationic toxicants and the slightly greater sensitivity of cv Atlas to anionic toxicants. According to our estimates the differences in PM surface negativity and Al sorptive capacity probably account for some of the difference in sensitivity to Al3+, but the greater part of the difference probably arises from other tolerance mechanisms expressed in cv Atlas root tips that reduce the amount of Al3+ that can reach the PM.  相似文献   

13.
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.  相似文献   

14.
An Al-stimulated efflux of malate from the root apex has been proposed as the primary mechanism whereby some wheat (Triticum aestivum L.) genotypes demonstrate marked resistance to the rhixotoxic metal Al. Appealing in its simplicity, the model has not been unequivocally validated, and suffers from some significant discrepancies between estimated, steady-state concentrations of malate at the root surface and concentrations that are necessary to explain the resistance of the superior genotypes. Using two other rhizotoxic ions that are also chelated by malate, Cu(II) and La(III), we specifically probed whether the quantities of malate released by tolerant genotypes could effectively detoxify Al. Experiments with exogenous additions of malate to solution showed that ≥200 μM malate is required to account for the difference between Scout 66 (Al-sensitive) and Atlas 66 (Al-tolerant) wheats, and that this level of malate can also partially alleviate the toxicities of Cu and La. When simultaneously exposed to a mildly rhizotoxic level of Al (25 μM) to induce malate efflux, Atlas exhibited a pronounced reduction in sensitivity to Cu. When, La was used as the proxy ion, however, no such Al-induced tolerance to La was observed, a result that refutes the significance of malate efflux to Al tolerance. Additional experiments using Al, Cu, and La in combination suggested that a trivalent ion can alleviate Cu toxicity directly (i.e. via competition for apoplastic binding), providing an alternative explanation for the ability of Al to detoxify Cu in Atlas. Using a weight-of-evidence approach, we argue that malate efflux plays at most a minor role in the differential Al tolerance of wheat, and that a more integrative, multifaceted model of tolerance is needed. Received: 14 August 1997 / Accepted: 26 November 1997  相似文献   

15.
The changes in osmotic potential and the concentration of osmotic solutes in the cell sap of the root tips exposed to Al were examined in two cultivars of wheat ( Triticum aestivum ) differing in Al resistance. Root elongation was less influenced by an 8-h exposure to 20 μ M or 50 μ M Al in Al-resistant cv. Atlas 66 than in Al-sensitive cv. Scout 66. After Al treatment the osmotic potential of the root cells was decreased in Atlas 66 but increased in Scout 66 indicating that the Al treatment osmotically stimulated the driving force for water uptake in Atlas 66 but suppressed it in Scout 66. Al increased the concentration of soluble sugars, the major osmotic solute in the root cells in Atlas 66, but decreased it in Scout 66. Al at both low (5 μ M ) and high (50 μ M ) concentrations, also increased the concentration of soluble sugars in the Al-resistant genotype ET8 but a high Al concentration decreased it in Al-sensitive genotype ES8. Enzymatic analyses and thin-layer chromatography revealed that soluble sugars in the root cells of both Atlas 66 and Scout 66 mainly consisted of monosaccharides such as glucose, fructose and a small amount of sucrose. These results suggest that the accumulation of soluble sugars in Al-resistant wheat Atlas 66 keeps the osmotic potential in the root cells low and thus, enables the root cells to take up water and to elongate against the pressure produced by cell wall rigidification under Al stress.  相似文献   

16.
Aluminum tolerance was assessed in the moderately Al-tolerant wheat (Triticum aestivum L.) cultivar Chinese Spring and a set of ditelosomic lines derived from Chinese Spring. Three ditelosomic lines lacking chromosome arms 4DL, 5AS and 7AS, respectively, exhibited decreased Al tolerance relative to the euploid parent Chinese Spring based on reduced root growth in Al-containing solutions. The physiological basis of the reduced Al tolerance was investigated. Measurements by inductively coupled argon plasma mass spectroscopy of root apical Al accumulation demonstrated that two of these three lines had a decreased ability to exclude Al from the root apex, the site of Al phytotoxicity. As Al-induced malate exudation has been suggested to be an important physiological mechanism of Al tolerance in wheat, this parameter was quantified and malate exudation was shown to be smaller in all three deletion lines compared with Chinese Spring. These results suggest that the decreased Al tolerance in at least two of the three ditelosomic lines is due to the loss of different genes independently influencing a single Al-tolerance mechanism, rather than to the loss of genes encoding alternative Al-tolerance mechanisms. Received: 3 July 2000 / Accepted: 9 August 2000  相似文献   

17.
Low temperature is one of the primary stresses limiting the growth and productivity of wheat (Triticum aestivum L.) and rye (Secale cereale L.). Winter cereals low-temperature-acclimate when exposed to temperatures colder than 10°C. However, they gradually lose their ability to tolerate below-freezing temperatures when they are maintained for long periods of time in the optimum range for low-temperature acclimation. The overwinter decline in low-temperature response has been attributed to an inability of cereals to maintain low-temperature-tolerance genes in an up-regulated state once vernalization saturation has been achieved. In the present study, the low-temperature-induced Wcs120 gene family was used to investigate the relationship between low-temperature gene expression and vernalization response at the molecular level in wheat and rye. The level and duration of gene expression determined the degree of low-temperature tolerance, and the vernalization genes were identified as the key factor responsible for the duration of expression of low-temperature-induced genes. Spring-habit cultivars that did not have a vernalization response were unable to maintain low-temperature-induced genes in an up-regulated condition when exposed to 4°C. Consequently, they were unable to achieve the same levels of low-temperature tolerance as winter-habit cultivars. A close association between the point of vernalization saturation and the start of a decline in the Wcs120 gene-family mRNA level and protein accumulation in plants maintained at 4°C indicated that vernalization genes have a regulatory influence over low-temperature gene expression in winter cereals.  相似文献   

18.
Control of rhizosphere pH and exclusion of Al by the plasma membrane have been hypothesized as possible mechanisms for Al tolerance. To test primarily the rhizosphere pH hypothesis, wheat cultivars (Triticum aestivum L. `Atlas 66' and `Scout'), which differ in Al tolerance, were grown in either complete nutrient solution, or 0.6 millimolar CaSO4, with and without Al at pH 4.50. A microelectrode system was used to simultaneously measure rhizosphere pH, K+, and H+ fluxes, and membrane potentials (Em) along the root at various distances from the root apex. In complete nutrient solution, the rhizosphere pH associated with mature root cells (measured 10-40 millimeters from the root apex) of Al-tolerant `Atlas 66' was slightly higher than that of the bulk solution, whereas roots of Al-sensitive `Scout' caused a very small decrease in the rhizosphere pH. In CaSO4 solution, no significant differences in rhizosphere pH were found between wheat cultivars, while differential Al tolerance was still observed, indicating that the rhizosphere pH associated with mature root tissue is not directly involved in the mechanism(s) of differential Al tolerance. In Al-tolerant `Atlas 66', growth in a CaSO4 solution with 5 micromolar Al (pH 4.50) had little effect on net K+ influx, H+ efflux, and root-cell membrane potential measured in cells of mature root tissue (from 10-40 mm back from apex). However, in Al-sensitive `Scout', Al treatment caused a dramatic inhibition of K+ influx and both a moderate reduction of H+ efflux and depolarization of the membrane potential. These results demonstrate that increased Al tolerance in wheat is associated with the increased ability of the tolerant plant to maintain normal ion fluxes and membrane potentials across the plasmalemma of root cells in the presence of Al.  相似文献   

19.
Aluminum (Al) toxicity is one of the major constrains for wheat production in many wheat growing areas worldwide. Further understanding of inheritance of Al resistance may facilitate improvement of Al resistance of wheat cultivars (Triticum aestivum L.). A set of ditelosomic lines derived from the moderately Al-resistant wheat cultivar Chinese Spring was assessed for Al resistance. The root growth of ditelosomic lines DT5AL, DT7AL, DT2DS and DT4DS was significantly lower than that of euploid Chinese Spring under Al stress, suggesting that Al-resistance genes might exist on the missing chromosome arms of 5AS, 7AS, 2DL and 4DL of Chinese Spring. A population of recombinant inbred lines (RILs) from the cross Annong 8455 × Chinese Spring-Sumai 3 7A substitution line was used to determine the effects of these chromosome arms on Al resistance. A genetic linkage map consisting of 381 amplified fragment length polymorphism (AFLP) markers and 168 simple sequence repeat (SSR) markers was constructed to determine the genetic effect of the quantitative trait loci (QTLs) for Al resistance in Chinese Spring. Three QTLs, Qalt.pser-4D, Qalt.pser-5A and Qalt.pser-2D, were identified that enhanced root growth under Al stress, suggesting that inheritance of Al resistance in Chinese Spring is polygenic. The QTL with the largest effect was flanked by the markers of Xcfd23 and Xwmc331 on chromosome 4DL and most probably is multi-allelic to the major QTL identified in Atlas 66. Two additional QTLs, Qalt.pser-5A and Qalt.pser-2D on chromosome 5AS and 2DL, respectively, were also detected with marginal significance in the population. Some SSR markers identified in this study would be useful for marker-assisted pyramiding of different QTLs for Al resistance in wheat cultivars.  相似文献   

20.
The role of Ca2+ transport in the mechanism of Al toxicity was investigated, using a Ca2+-selective microelectrode system to study Al effects on root apical Ca2+ fluxes in two wheat (Triticum aestivum L.) cultivars: Al-tolerant Atlas 66 and Al-sensitive Scout 66. Intact 3-day-old low-salt-grown (100 micromolar CaCl2, pH 4.5) wheat seedlings were used, and it was found that both cultivars maintained similar rates of net Ca2+ uptake in the absence of Al. Addition of Al concentrations that were toxic to Scout (5-20 micromolar AlCl3) immediately and dramatically inhibited Ca2+ uptake in Scout, whereas Ca2+ transport in Atlas was relatively unaffected. The Al-induced inhibition of Ca2+ uptake in Scout 66 was rapidly reversed following removal of Al from the solution bathing the roots. Similar studies with morphologically intact root cell wall preparations indicated that the Al effects did not involve Al-Ca interactions in the cell wall. These results suggest that Al inhibits Ca2+ influx across the root plasmalemma, possibly via blockage of calcium channels. The differential effect of Al on Ca2+ transport in Al-sensitive Scout and Al-tolerant Atlas suggests that Al blockage of Ca2+ channels could play a role in the cellular mechanism of Al toxicity in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号