首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive evolution of Cid, a centromere-specific histone in Drosophila   总被引:13,自引:0,他引:13  
Malik HS  Henikoff S 《Genetics》2001,157(3):1293-1298
Centromeric DNA is generally composed of large blocks of tandem satellite repeats that change rapidly due to loss of old arrays and expansion of new repeat classes. This extreme heterogeneity of centromeric DNA is difficult to reconcile with the conservation of the eukaryotic chromosome segregation machinery. Histone H3-like proteins, including Cid in Drosophila melanogaster, are a unique chromatin component of centromeres. In comparisons between closely related species of Drosophila, we find an excess of replacement changes that have been fixed since the separation of D. melanogaster and D. simulans, suggesting adaptive evolution. The last adaptive changes appear to have occurred recently, as evident from a reduction in polymorphism in the melanogaster lineage. Adaptive evolution has occurred both in the long N-terminal tail as well as in the histone fold of Cid. In the histone fold, the replacement changes have occurred in the region proposed to mediate binding to DNA. We propose that this rapid evolution of Cid is driven by a response to the changing satellite repeats at centromeres. Thus, centromeric H3-like proteins may act as adaptors between evolutionarily labile centromeric DNA and the conserved kinetochore machinery.  相似文献   

2.
Adaptive evolution of the histone fold domain in centromeric histones   总被引:5,自引:0,他引:5  
Centromeric DNA, being highly repetitive, has been refractory to molecular analysis. However, centromeric structural proteins are encoded by single-copy genes, and these can be analyzed by using standard phylogenetic tools. The centromere-specific histone, CenH3, replaces histone H3 in centromeric nucleosomes, and is required for the proper distribution of chromosomes during cell division. Whereas histone H3s are nearly identical between species, CenH3s are divergent, with an N-terminal tail that is highly variable in length and sequence. Both the N-terminal tail and histone fold domain (HFD) are subject to adaptive evolution in Drosophila. Similarly, comparisons between Arabidopsis thaliana and Arabidopsis arenosa detected adaptive evolution, but only in the N-terminal tail. We have extended our evolutionary analyses of CenH3s to other members of the Brassicaceae, which allowed the detection of positive selection in both the N-terminal tail and in the HFD. We find that adaptively evolving sites in the HFD can potentially interact with DNA, including sites in the loop 1 region of the HFD that are required for centromeric targeting in Drosophila. Other adaptively evolving sites in the HFD can be localized on the structure of the nucleosome core particle, revealing an extended surface in addition to loop 1 in which conformational changes might alter histone-DNA contacts or water bridges. The identification of adaptively evolving sites provides a structural basis for the interaction between centromeric DNA and the protein that is thought to underlie the evolution of centromeres and the accumulation of pericentric heterochromatin.  相似文献   

3.
The properties that define centromeres in complex eukaryotes are poorly understood because the underlying DNA is normally repetitive and indistinguishable from surrounding noncentromeric sequences. However, centromeric chromatin contains variant H3-like histones that may specify centromeric regions. Nucleosomes are normally assembled during DNA replication; therefore, we examined replication and chromatin assembly at centromeres in Drosophila cells. DNA in pericentric heterochromatin replicates late in S phase, and so centromeres are also thought to replicate late. In contrast to expectation, we show that centromeres replicate as isolated domains early in S phase. These domains do not appear to assemble conventional H3-containing nucleosomes, and deposition of the Cid centromeric H3-like variant proceeds by a replication-independent pathway. We suggest that late-replicating pericentric heterochromatin helps to maintain embedded centromeres by blocking conventional nucleosome assembly early in S phase, thereby allowing the deposition of centromeric histones.  相似文献   

4.
In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.  相似文献   

5.
The centromeric histone H3 (CENH3) substitutes histone H3 within the nucleosomes of active centromeres in all eukaryotes. CENH3 deposition at centromeres is needed to assemble the kinetochore, a complex of conserved proteins responsible for correct chromosome segregation during nuclear division. Histones of regular nucleosomes are loaded during replication in S phase, while CENH3 deposition deviates from this pattern in yeast, human, and Drosophila melanogaster cells. Little is known about when and how CENH3 targets centromeric loci. Therefore, we determined the location and quantity of recombinant enhanced yellow fluorescent protein (EYFP)-CENH3 in mitotic root and endopolyploid leaf nuclei of transgenic Arabidopsis thaliana cells. Our data indicate significant loading of A. thaliana CENH3 during G2 (before splitting into sister kinetochores) rather than during the S or M phase of the cell cycle. The histone fold domain of the C-terminal part of CENH3 is sufficient to target A. thaliana centromeres. A. thaliana EYFP-CENH3 can recognize and target three different centromeric repeats of Arabidopsis lyrata but not field bean (Vicia faba) centromeres.  相似文献   

6.
The Cse4 nucleosome at each budding yeast centromere must be faithfully assembled each cell cycle to specify the site of kinetochore assembly and microtubule attachment for chromosome segregation. Although Scm3 is required for the localization of the centromeric H3 histone variant Cse4 to centromeres, its role in nucleosome assembly has not been tested. We demonstrate that Scm3 is able to mediate the assembly of Cse4 nucleosomes in vitro, but not H3 nucleosomes, as measured by a supercoiling assay. Localization of Cse4 to centromeres and the assembly activity depend on an evolutionarily conserved core motif in Scm3, but localization of the CBF3 subunit Ndc10 to centromeres does not depend on this motif. The centromere targeting domain of Cse4 is sufficient for Scm3 nucleosome assembly activity. Assembly does not depend on centromeric sequence. We propose that Scm3 plays an active role in centromeric nucleosome assembly.  相似文献   

7.
We have combined in vivo and in vitro approaches to investigate the function of CENP-B, a major protein of human centromeric heterochromatin. Expression of epitope-tagged deletion derivatives of CENP-B in HeLa cells revealed that a single domain less than 158 residues from the amino terminus of the protein is sufficient to localize CENP-B to centromeres. Centromere localization was abolished if as few as 28 amino acids were removed from the amino terminus of CENP-B. The centromere localization signal of CENP-B can function in an autonomous fashion, relocating a fused bacterial enzyme to centromeres. The centromere localization domain of CENP-B specifically binds in vitro to a subset of alpha-satellite DNA monomers. These results suggest that the primary mechanism for localization of CENP-B to centromeres involves the recognition of a DNA sequence found at centromeres. Analysis of the distribution of this sequence in alpha-satellite DNA suggests that CENP-B binding may have profound effects on chromatin structure at centromeres.  相似文献   

8.
Semi-conservative segregation of nucleosomes to sister chromatids during DNA replication creates gaps that must be filled by new nucleosome assembly. We analyzed the cell-cycle timing of centromeric chromatin assembly in Drosophila, which contains the H3 variant CID (CENP-A in humans), as well as CENP-C and CAL1, which are required for CID localization. Pulse-chase experiments show that CID and CENP-C levels decrease by 50% at each cell division, as predicted for semi-conservative segregation and inheritance, whereas CAL1 displays higher turnover. Quench-chase-pulse experiments demonstrate that there is a significant lag between replication and replenishment of centromeric chromatin. Surprisingly, new CID is recruited to centromeres in metaphase, by a mechanism that does not require an intact mitotic spindle, but does require proteasome activity. Interestingly, new CAL1 is recruited to centromeres before CID in prophase. Furthermore, CAL1, but not CENP-C, is found in complex with pre-nucleosomal CID. Finally, CENP-C displays yet a different pattern of incorporation, during both interphase and mitosis. The unusual timing of CID recruitment and unique dynamics of CAL1 identify a distinct centromere assembly pathway in Drosophila and suggest that CAL1 is a key regulator of centromere propagation.  相似文献   

9.
植物着丝粒结构和功能的研究进展   总被引:1,自引:0,他引:1  
佘朝文  宋运淳 《遗传》2006,28(12):1597-1606
着丝粒是真核生物有丝分裂和减数分裂染色体正确分离和传递所必需的染色体区域。十多年来, 已对包括拟南芥、水稻、玉米在内的一些植物的着丝粒进行了较深入的分子生物学研究。在不同的植物间, 着丝粒DNA的保守性很低, 呈现快速进化, 但着丝粒的DNA序列类型和组织方式基本相似, 一般是由夹杂排列着的卫星DNA串联重复阵列和着丝粒专一的反转录转座子构成。与着丝粒DNA相反, 着丝粒/着丝点的结构性和瞬时蛋白质在包括植物在内的真核生物中保守。与其他真核生物的情况一样, 拥有含着丝粒组蛋白H3(CENH3)的核小体是植物功能着丝粒染色质最基本的特征, CENH3在着丝粒染色质的识别和保持中起着关键作用。  相似文献   

10.
In plants, as in all eukaryotes, centromeres are chromatin domains that govern the transmission of nuclear chromosomes to the next generation of cells/individuals. The DNA composition and sequence organization of centromeres has recently been elucidated for a few plant species. Although there is little sequence conservation among centromeres, they usually contain tandem repeats and retroelements. The occurrence of neocentromeres reinforces the idea that the positions of centromeres are determined epigenetically. In contrast to centromeric DNA, structural and transient kinetochoric proteins are highly conserved among eukaryotes. Candidate sequences have been identified for a dozen putative kinetochore protein homologues, and some have been localized to plant centromeres. The kinetochore protein CENH3, which substitutes histone H3 within centromeric nucleosomes, co-immunoprecipitates preferentially with centromeric sequences. The mechanism(s) of centromere assembly and the functional implication of (peri-)centromeric modifications of chromatin remain to be elucidated.  相似文献   

11.
Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.  相似文献   

12.
The interaction between rapidly evolving centromere sequences and conserved kinetochore machinery appears to be mediated by centromere-binding proteins. A recent theory proposes that the independent evolution of centromere-binding proteins in isolated populations may be a universal cause of speciation among eukaryotes. In Drosophila the centromere-specific histone, Cid (centromere identifier), shows extensive sequence divergence between D. melanogaster and the D. simulans clade, indicating that centromere machinery incompatibilities may indeed be involved in reproductive isolation and speciation. However, it is presently unclear whether the adaptive evolution of Cid was a cause of the divergence between these species, or merely a product of postspeciation adaptation in the separate lineages. Furthermore, the extent to which divergent centromere identifier proteins provide a barrier to reproduction remains unknown. Interestingly, a small number of rescue lines from both D. melanogaster and D. simulans can restore hybrid fitness. Through comparisons of cid sequence between nonrescue and rescue strains, we show that cid is not involved in restoring hybrid viability or female fertility. Further, we demonstrate that divergent cid alleles are not sufficient to cause inviability or female sterility in hybrid crosses. Our data do not dispute the rapid divergence of cid or the coevolution of centromeric components in Drosophila; however, they do suggest that cid underwent adaptive evolution after D. melanogaster and D. simulans diverged and, consequently, is not a speciation gene.  相似文献   

13.
Centromeric chromatin is uniquely marked by the centromere-specific histone CENP-A. For assembly of CENP-A into nucleosomes to occur without competition from H3 deposition, it was proposed that centromeres are among the first or last sequences to be replicated. In this study, centromere replication in Drosophila was studied in cell lines and in larval tissues that contain minichromosomes that have structurally defined centromeres. Two different nucleotide incorporation methods were used to evaluate replication timing of chromatin containing CID, a Drosophila homologue of CENP-A. Centromeres in Drosophila cell lines were replicated throughout S phase but primarily in mid S phase. However, endogenous centromeres and X-derived minichromosome centromeres in vivo were replicated asynchronously in mid to late S phase. Minichromosomes with structurally intact centromeres were replicated in late S phase, and those in which centric and surrounding heterochromatin were partially or fully deleted were replicated earlier in mid S phase. We provide the first in vivo evidence that centromeric chromatin is replicated at different times in S phase. These studies indicate that incorporation of CID/CENP-A into newly duplicated centromeres is independent of replication timing and argue against determination of centromere identity by temporal sequestration of centromeric chromatin replication relative to bulk genomic chromatin.  相似文献   

14.
Twin intromittent organs of Drosophila for traumatic insemination   总被引:1,自引:0,他引:1  
In several animals, male genitalia create insemination wounds in areas outside the genital orifice of females. I report that such traumatic insemination (TI) occurs in the Drosophila bipectinata complex (Diptera: Drosophilidae) and illustrate a previously unknown evolutionary pathway for this behaviour. Flash fixation of mating pairs revealed the dual function of the paired claw-like basal processes, previously misidentified as a bifid aedeagus: (i) penetration of the female body wall near the genital orifice and (ii) sperm transfer into the genital tract through the wounds. Basal processes in closely related species (Drosophila ananassae and Drosophila pallidosa) also wounded females but did not transfer sperm; this represents a transitional state to TI as observed in the bipectinata complex. Copulatory wounding is suggested to occur in other allied species of the Drosophila melanogaster species group, including D. melanogaster. Ubiquitous sexual conflicts over mating may have led to the evolution of novel intromittent organs for insemination.  相似文献   

15.
In mitosis and meiosis, cohesion is maintained at the centromere until sister-chromatid separation. Drosophila MEI-S332 is essential for centromeric cohesion in meiosis and contributes to, though is not absolutely required for, cohesion in mitosis. It localizes specifically to centromeres in prometaphase and delocalizes at the metaphase-anaphase transition. In mei-S332 mutants, centromeric sister-chromatid cohesion is lost at anaphase I, giving meiosis II missegregation. MEI-S332 is the founding member of a family of proteins important for chromosome segregation. One likely activity of these proteins is to protect the cohesin subunit Rec8 from cleavage at the metaphase I-anaphase I transition. Although the family members do not show high sequence identity, there are two short stretches of homology, and mutations in conserved residues affect protein function. Here we analyze the cis- and trans-acting factors required for MEI-S332 localization. We find a striking correlation between domains necessary for MEI-S332 centromere localization and conserved regions within the protein family. Drosophila MEI-S332 expressed in human cells localizes to mitotic centromeres, further highlighting this functional conservation. MEI-S332 can localize independently of cohesin, assembling even onto unreplicated chromatids. However, the separase pathway that regulates cohesin dissociation is needed for MEI-S332 delocalization at anaphase.  相似文献   

16.
17.
Centromeres are the site of kinetochore formation during mitosis. Centromere protein A (CENP-A), the centromere-specific histone H3 variant, is essential for the epigenetic maintenance of centromere position. Previously we showed that newly synthesized CENP-A is targeted to centromeres exclusively during early G1 phase and is subsequently maintained across mitotic divisions. Using SNAP-based fluorescent pulse labeling, we now demonstrate that cell cycle–restricted chromatin assembly at centromeres is unique to CENP-A nucleosomes and does not involve assembly of other H3 variants. Strikingly, stable retention is restricted to the CENP-A/H4 core of the nucleosome, which we find to outlast general chromatin across several cell divisions. We further show that cell cycle timing of CENP-A assembly is independent of centromeric DNA sequences and instead is mediated by the CENP-A targeting domain. Unexpectedly, this domain also induces stable transmission of centromeric nucleosomes, independent of the CENP-A deposition factor HJURP. This demonstrates that intrinsic properties of the CENP-A protein direct its cell cycle–restricted assembly and induces quantitative mitotic transmission of the CENP-A/H4 nucleosome core, ensuring long-term stability and epigenetic maintenance of centromere position.  相似文献   

18.
Chromatin structure of so-called 'Alu-repeat' in D. melanogaster ribosomal non-transcribed spacer that contains sequences homologous to the promoter of ribosomal genes has been studied. Using the 'protein image' hybridization assay based on UV-light-induced DNA-protein crosslinking and 2-D gel retardation electrophoresis, two proteins of the molecular mass of 50 kD (rABP50) and 70 kD (rABP70), associated with 'Alu-repeat' DNA have been found. Exo III mapping of crosslinking sites and DNase I footprinting have provided a detailed map of H1, rABP50 and rABP70 contacts within the 'Alu-repeat' and H1 and a non-histone protein contacts on satellite DNA. These data indicate precise positioning of non-histone proteins, histone H1 and nucleosomes within genomic regions studied and account for the presence of unusual 240 bp long nucleosomal particles in 'Alu-repeats'. The same approach can be adapted for successive mapping and positioning proteins on genomic DNA.  相似文献   

19.
The preferential assembly of specialized nucleosomes on budding yeast centromeres can be due either to the higher stability of specialized centromeric nucleosomes and/or to the lower stability of canonical centromeric nucleosomes with respect to bulk nucleosomes. We have evaluated the thermodynamic stability of canonical nucleosomes, assembled on Kluyveromyces lactis centromeric DNAs, with a competitive reconstitution assay and a theoretical method recently developed by us. The results, obtained by both methods, show that all five known centromeric DNAs from K. lactis are able to organize canonical nucleosomes, characterized by higher stability with respect those of bulk DNA. With 'footprinting' and theoretical prediction, based on sequence-dependent DNA elasticity, we have found that centromeric canonical nucleosomes are characterized by nucleosome dyad axis multiple positioning, rotationally phased. The isoenergetic nucleosome multiple positions are relevant in understanding the transition from canonical to specialized nucleosomes in interacting with centromere protein complexes. The satisfactory agreement between the results obtained from theoretical and experimental methods shows that sequence-dependent centromeric DNA elasticity has a main role in nucleosome thermodynamic stability and positioning.  相似文献   

20.
Nucleosomal structure of two Drosophila melanogaster simple satellites   总被引:1,自引:0,他引:1  
Nucleosomes have been fractionated on nondenaturing polyacrylamide gels, and nucleosome subtypes containing the Drosophila melanogaster specific protein D1 and ubiquitinated core histone H2A were identified by solubility in 0.1 M NaCl before nucleoprotein gel electrophoresis. Nucleosomes which contain DNA complementary to the 1.672 density simple satellite (sequence-AATAT-) bind protein D1, as demonstrated by two-dimensional hybridization mapping. This hybridization pattern allows the identification of D1 dinucleosomes, which, like D1 mononucleosomes, are reduced in mobility on the first dimension (nucleoprotein) gel by the addition of D1, an AT sequence-specific DNA-binding protein. The 1.705 density simple satellite (sequence-AAGAG-) is also found in nucleosomes, in a radically different subset from those of the -AATAT- DNA sequence. -AAGAG- nucleosomes do not contain D1 protein, but appear to be enriched in ubiquitinated core histone H2A. One-dimensional hybridization patterns suggest that -AAGAG- nucleosomal DNA is rapidly trimmed to a shorter DNA length than either bulk or -AATAT- nucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号