首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The area planted to genetically engineered crops has increased dramatically in the last ten years. This has generated many studies examining non-target effects of bioengineered plants expressing Bacillus thuringiensis endotoxins. To date, most have focused on population-level effects in the field or laboratory evaluation of specific plant-herbivore or plant-herbivore-predator trophic pathways. Using a post-mortem enzyme-linked immunosorbent assay, we examined the uptake of Cry1Ab-endotoxins by predatory coccinellids and the importance of anthesis to this trophic pathway. Adult Coleomegilla maculata, Harmonia axyridis, Cycloneda munda and Coccinella septempunctata contained low, but detectable, quantities of Bt-endotoxin when screened by ELISA. This was most evident in C. maculata, with 12.8% of 775 individuals testing positive for Cry1Ab-endotoxins. Interestingly, the presence of endotoxins in gut samples was not confined to periods around anthesis, but coccinellid adults tested positive two weeks before and up to ten weeks after pollen was shed, suggesting tri-trophic linkages in their food chain facilitates the transfer of endotoxins into higher-order predators. This contrasts with adult Coleomegilla maculata entering overwintering sites where Bt-endotoxins were not detected in gut samples, indicating low levels of persistence of Cry1Ab-endotoxins within coccinellid predators. This study enhances our understanding of complex interactions between transgenic crops and non-target food webs, but further research is required to quantify the significance of specific trophic linkages in the field.  相似文献   

2.
Enzyme-linked immunosorbent assays (ELISA) and bioassays were used to estimate levels of Cry1Ab protein in four species of phytophagous insects after feeding on transgenic Bt-corn plants expressing Cry1Ab protein or artificial diets containing Cry1Ab protein. The level of Cry1Ab in insects feeding on sources containing the Cry1Ab protein was uniformly low but varied with insect species as well as food source. For the corn leaf aphid, Rhopalosiphum maidis (Fitch), feeding on diet solutions containing Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic Bt-Corn plants. For the lepidopteran insects, Ostrinia nubilalis (Hübner), Helicoverpa zea (Boddie), and Agrotis ipsilon (Hufnagel), levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the larvae was about 57 and 142 times lower, respectively, than the original protein level in the diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon. Diet incorporation bioassays with a susceptible insect (first instar O. nubilalis) showed significant Cry1Ab bioactivity present within whole body tissues of R. maidis and O. nubilalis that had fed on diet containing a minimum of 20 ppm or higher concentrations (100 or 200 ppm) of Cry1Ab, but no significant bioactivity within the tissues of these insects after feeding on transgenic Bt-corn plants. The relevance of these findings to secondary exposure risk assessment for transgenic Bt crops is discussed.  相似文献   

3.
The planting of transgenic crops expressing Bacillus thuringiensis endotoxins is widespread throughout the world; the prolific increase in their application exposes nontarget organisms to toxins designed to control pests. To date, studies have focused upon the effects of Bt endotoxins on specific herbivores and detritivores, without consideration of their persistence within arthropod food webs. Here, we report the first quantitative field evaluation of levels of Bt endotoxin within nontarget herbivores and the uptake by higher order arthropods. Antibody-based assays indicated significant quantities of detectable Cry1Ab endotoxin within nontarget herbivores which feed on transgenic corn (including the corn flea beetle, Chaetocnema pulicaria, Japanese beetle, Popillia japonica and southern corn rootworm, Diabrotica undecimpunctata howardi). Furthermore, arthropod predators (Coccinellidae, Araneae, and Nabidae) collected from these agroecosystems also contained significant quantities of Cry1Ab endotoxin indicating its movement into higher trophic levels. This uptake by predators is likely to have occurred by direct feeding on plant material (in predators which are facultatively phytophagous) or the consumption of arthropod prey which contained these proteins. These data indicate that long-term exposure to insecticidal toxins occurs in the field. These levels of exposure should therefore be considered during future risk assessments of transgenic crops to nontarget herbivores and arthropod predators.  相似文献   

4.
Many generalist predators are abundant in transgenic crops but the uptake of Bt-endotoxins could affect their role in biological control. We tested the hypothesis that small, but detectable, quantities of Cry1Ab-Bt-endotoxin would flow along the corn-slug-carabid food chain but concentrations would be small and have no effect on carabid fecundity. In addition to controlled laboratory feeding trials, it was predicted that elevated concentrations of Bt-endotoxin would be found in field-collected gut-samples of Scarites subterraneus from transgenic corn due to predation on Bt-containing prey. Despite the uptake of Bt-endotoxins by the slug Deroceras laeve, the hypothesis that movement occurred throughout the corn-slug-carabid food chain was rejected. No Bt-endotoxins were found in laboratory or field-collected Scarites. This explained the insignificant differences in egg production between carabids exposed to Bt-containing versus non-Bt-containing prey. However, laboratory and field analyses with other predators are required to identify trophic linkages through which Bt-endotoxins flow.  相似文献   

5.
Ingestion and excretion of two transgenic Bt corn varieties by slugs   总被引:1,自引:0,他引:1  
The release of transgenic Bacillus thuringiensis (Bt) corn expressing various Cry endotoxins has raised concern that these endotoxins are disseminated in the food web and may adversely affect non-target beneficial organisms, such as predators and organisms of the decomposer food web. We therefore investigated in a laboratory study, whether the Cry1Ab and Cry3Bb1 protein from Bt corn could potentially be transferred to such organisms by measuring the Cry protein content in the two common agricultural slug pests Arion lusitanicus and Deroceras reticulatum and their feces. We measured Cry1Ab and Cry3Bb1 protein concentration in leaves, intestines, and feces of corn leaf-fed slugs using ELISA and determined how much of the ingested protein is excreted by the slugs. Cry3Bb1 concentration in leaves of DKC5143Bt corn was significantly higher than Cry1Ab concentration in leaves of N4640Bt corn. While slugs were feeding on corn leaves, the Cry3Bb1 and Cry1Ab proteins were found in intestines and feces of both slug species. Bt protein concentrations in intestines of Cry3Bb1 corn-fed slugs were in both slug species higher than in Cry1Ab corn fed slugs, whereas no differences between Cry3Bb1 and Cry1Ab protein in feces were found. After slugs had ceased feeding on Bt corn, Cry1Ab was detectable in fresh slug feces for a significantly longer time and often in higher amounts than the Cry3Bb1. Our results indicate that both Cry proteins are likely to be transferred to higher trophic levels and to the decomposer food web. Since different Bt proteins seem to vary in their degradation, they have different transfer probabilities. This should be considered in risk assessments for non-target arthropods.  相似文献   

6.
A comprehensive assessment of risk to natural enemies from Bt-endotoxins from bioengineered crops must evaluate potential harm, as well as exposure pathways in non-target arthropod food webs. Despite being abundant generalist predators in agricultural fields, spiders (Araneae) have often been overlooked in the context of Bt crop risk assessment. Spiders and their prey were collected from transgenic corn fields expressing lepidopteran-specific Cry1Ab, coleopteran-specific Cry3Bb1, both proteins, and a non-transgenic near isoline. Spiders and prey were screened for Cry1Ab and Cry3Bb1 using qualitative enzyme-linked immunosorbent assay. Spiders from the three most common functional guilds, wandering sheet-tangle weavers, orb-weavers, and ground runners, tested positive for Cry1Ab and Cry3Bb1 proteins, with the highest per cent positive (8.0% and 8.3%) during and after anthesis. Laboratory feeding trials revealed that Bt-endotoxins were detectable in the Pardosa sp. (Lycosidae)-immature cricket-Bt corn pathway, but not in the Tennesseellum formica (Linyphiidae)-Collembola-Bt corn pathway. Additionally, direct consumption of transgenic corn pollen by Pardosa sp., T. formica, and Cyclosa turbinata (Araneidae) resulted in transfer of both Cry1Ab and Cry3Bb1 endotoxins. This study demonstrates that Bt-endotoxins are taken up by diverse members of a spider community via pollen and prey consumption and should be factored into future risk assessment.  相似文献   

7.
Both herbivores that consume transgenic crops and their predators can be exposed to insecticidal proteins expressed in those crops. We conducted a tritrophic bioassay to evaluate the ecotoxicological impacts that Bt cabbage (Brassica oleracea var. capitata) expressing Cry1Ac1 protein might have on the wolf spider (Pardosa astrigera), a non-target generalist predator. Enzyme-Linked Immunosorbent Assays indicated that protein levels were 4.61 ng g-1 dry weight in fruit flies (Drosophila melanogaster) fed with the transgenic cabbage and 1.86 ng g-1 dry weight in the wolf spiders that preyed upon them. We also compared the life history traits of spiders collected from Bt versus non-Bt cabbage and found no significant differences in their growth, survival, and developmental rates. Because Bt cabbage did not affect the growth of fruit flies, we conclude that any indirect effects that this crop had on the wolf spider were probably not mediated by prey quality. Therefore, exposure to Cry1Ac1 protein when feeding upon prey containing that substance from transgenic cabbage has only a negligible influence on those non-target predatory spiders.  相似文献   

8.
1. Studies have shown that Cry proteins of the bacterium Bacillus thuringiensis expressed in transgenic plants can be acquired by nontarget herbivores and predators. A series of studies under field and controlled conditions was conducted to investigate the extent to which Cry1Ac protein from Bt transgenic cotton reaches the third trophic level and to measure the amount of protein that herbivores can acquire and expose to predators. 2. Levels of Cry1Ac in Bt cotton leaves decreased over the season. Among herbivores (four species), Cry1Ac was detected in lepidopteran larvae and the amount varied between species. Among predators (seven species), Cry1Ac was detected in Podisus maculiventris and Chrysoperla rufilabris. 3. In the greenhouse, only 14% of the Cry1Ac detected in the prey (Spodoptera exigua larvae) was subsequently found in the predator P. maculiventris. Detection of Cry1Ac protein in Orius insidiosus, Geocoris punctipes and Nabis roseipennis was probably limited by the amount of prey consumed that had fed on Bt cotton. 4. Purified Cry1Ac was acquired by the small predatory bug G. punctipes but at much higher concentration than found in plants or in lepidopteran larvae. 5. Bt protein was shown to move through prey to the third trophic level. Predatory heteropterans acquired Cry1Ac from prey fed Bt cotton, but acquisition was dependent on the concentration of Cry1Ac conveyed by the prey and the amount of prey consumed. The type and availability of prey capable of acquiring the protein, coupled with the generalist feeding behaviour of the most common predators in the cotton ecosystem, probably constrain the flow of Cry1Ac through trophic levels.  相似文献   

9.
Laboratory feeding experiments using two transgenic Bacillus thuringiensis (Bt) rape cultivars (Bt‐Westar and Bt‐Oscar) both expressing the Cry1Ac protein, and the corresponding untransformed lines, were carried out to study the effects of transgenic Bt rape on the non‐target herbivore Athalia rosae (L.) (Hymenoptera: Tenthredinidae). Furthermore, Cry1Ac protein concentration in Bt rape leaves, A. rosae larvae fed Bt rape, their faeces, eonymph instars, pupae, and adults were quantified using an enzyme‐linked immunosorbent assay (ELISA). There were no significant differences in mortality, larval development, and weight between transgenic Bt rape and non‐transgenic rape fed A. rosae. Additionally, we did not detect any significant differences in the fecundity and fertility of adult females either fed as larvae with transgenic Bt or with non‐transgenic rape. However, results of the ELISA indicated that Cry1Ac protein was detectable in larvae and faeces (Bt‐Westar 1.1 ± 0.2 and Bt‐Oscar 0.3 ± 0.2 µg Cry1Ac protein/g fresh weight) although this was less than in the leaf material, where concentrations were 2.2 ± 0.8 µg Cry1Ac protein/g fresh weight for Bt‐Westar and 7.5 ± 2.9 µg Cry1Ac protein/g fresh weight in Bt‐Oscar. In contrast, Cry1Ac protein could not be detected in eonymphs, pupae, or adults of A. rosae. Our results suggest that Cry1Ac protein in Bt rape does not have a significant effect on the herbivore A. rosae but the protein is still detectable after ingestion and excretion by these herbivores, thus providing the possibility of exposure to organisms other than herbivores.  相似文献   

10.
A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.  相似文献   

11.
Considerable effort has been expended to determine if crops genetically engineered to produce Bacillus thuringiensis (Bt) toxins harm non‐target arthropods. However, if Bt crops kill target pests and thereby reduce insecticide use, this could benefit some non‐target arthropods. We analyzed data from 21 commercial cotton fields in Arizona to test the effects of Bt cotton on insecticide use and abundance of two non‐target arthropods, the generalist predators Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) and Orius tristicolor (White) (Heteroptera: Anthocoridae). The number of insecticide sprays was more than double for non‐Bt cotton compared with Bt cotton that produced Cry1Ac. The abundance of both predators was negatively associated with the number of insecticide sprays, although significantly so for only one of two sampling periods for each species tested. With the effects of insecticides statistically removed, field type (Bt or non‐Bt cotton) did not affect the abundance of either predator. Accordingly, without adjusting for the effects of insecticide sprays, the abundance of C. carnea was higher in Bt cotton fields than in non‐Bt cotton fields, but significantly so during only one of two sampling periods. The abundance of O. tristicolor did not differ between field types, even without adjusting for effects of insecticide sprays. The results indicate that Bt crops can affect insecticide use, which in turn can affect the relative abundance of non‐target arthropods in Bt and non‐Bt fields. Thus, environmental impact assessment should incorporate analysis of the effects of transgenic crops on management practices, as well as evaluation of the direct effects of such crops.  相似文献   

12.
Dietary exposure studies are initial steps in environmental risk assessments of genetically engineered plants on non‐target organisms. These studies are conducted in the laboratory where surrogate species are exposed to purified and biologically active insecticidal compounds at higher concentrations than those expected to occur in transgenic crops foliage. Thus, dietary exposure (early tier) tests provide robust data needed to make general conclusions about the susceptibility of the surrogate species to the test substance. For this, we developed suitable artificial diet and used it to establish a dietary exposure test for assessing the toxicity of midgut‐active insecticidal compounds to the larvae of the Asian ladybird beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Using boric acid as a model compound, we validated the bioassay established for H. axyridis larvae. An artificial diet containing boric acid which negatively affected survival, development and adult weights was offered to larvae and indicated that the bioassay was able to detect toxic effects of insecticidal substances incorporated in diets. Using this dietary exposure test, environmental risk assessment of Cry1Ac, Cry2Ab, Cry1Ca, Cry1F and the non‐Cry protein Vip3Aa was evaluated by analysing pupation rates, adult emergence rates, 7‐day larval weights, and freshly emerged male and female weights among the toxin treatments and a pure artificial diet. These life‐table parameters did not vary among artificial diets containing 200 μg/g Bt proteins or pure artificial diet. In contrast, boric acid adversely affected all life‐table parameters. Thus on these bases, we concluded H. axyridis larvae are not sensitive to these Bt proteins expressed in genetically engineered crops.  相似文献   

13.
The application of Bacillus thuringiensis (Bt) and the growing of genetically-modified crops are currently practised to control infestations of crop-eating insects. The increasing use of these biopesticides could lead to an increase in Cry1Ab endotoxin in both terrestrial and aquatic environments. The aim of this study was to quantify levels of Cry1Ab endotoxin and locate its source in the environment. Agricultural soils and surface waters were spiked with crystals (biopesticide-Dipel®) or with pure Bt-corn endotoxin. Cry1Ab concentrations were then determined with immunoassays. Additionally, surface water, soils and sediments were sampled in an area sprayed with Bt kurstaki and at a site where genetically-modified corn expressing Cry1Ab is grown. Isotopic analysis was performed on the endotoxin from Bt and Bt corn to characterize the proportions of 13C/12C and 15N/14N. The results showed that Bt-corn endotoxin is degraded more rapidly in water than in soils (t1/2: 4 and 9 days, respectively), while crystals appeared to be more resilient, as expected. The isotopic patterns of 13C and 15N in Bt-corn endotoxin differed markedly from Bt, making it possible to track the source of Cry1Ab in the environment. Preliminary field surveys indicate that Cry1Ab is fairly uncommon in aquatic environments, being found only at trace concentrations when it is detected.  相似文献   

14.
A critical assessment of the effects of Bt transgenic plants on parasitoids   总被引:3,自引:0,他引:3  
The ecological safety of transgenic insecticidal plants expressing crystal proteins (Cry toxins) from the bacterium Bacillus thuringiensis (Bt) continues to be debated. Much of the debate has focused on nontarget organisms, especially predators and parasitoids that help control populations of pest insects in many crops. Although many studies have been conducted on predators, few reports have examined parasitoids but some of them have reported negative impacts. None of the previous reports were able to clearly characterize the cause of the negative impact. In order to provide a critical assessment, we used a novel paradigm consisting of a strain of the insect pest, Plutella xylostella (herbivore), resistant to Cry1C and allowed it to feed on Bt plants and then become parasitized by Diadegma insulare, an important endoparasitoid of P. xylostella. Our results indicated that the parasitoid was exposed to a biologically active form of the Cy1C protein while in the host but was not harmed by such exposure. Parallel studies conducted with several commonly used insecticides indicated they significantly reduced parasitism rates on strains of P. xylostella resistant to these insecticides. These results provide the first clear evidence of the lack of hazard to a parasitoid by a Bt plant, compared to traditional insecticides, and describe a test to rigorously evaluate the risks Bt plants pose to predators and parasitoids.  相似文献   

15.
Despite the reported specificity of Bacillus thuringiensis proteins against target pests, a number of studies have indicated that the uptake of Bt-endotoxins from bioengineered crops could have negative effects on natural enemies. It is therefore essential to quantify exposure pathways in non-target arthropod food webs across multiple transgenic events. Adult ground beetles (Coleoptera: Carabidae) were collected from transgenic corn fields expressing lepidopteran-specific Cry1Ab, coleopteran-specific Cry3Bb1, and both Cry1Ab and Cry3Bb1 (stacked event), as well as a non-transgenic isoline. Carabid gut-contents were screened for Cry1Ab Bt-endotoxin using enzyme-linked immunosorbent assay. Significant numbers of carabids tested positive for Cry1Ab from the lepidopteran-specific field: Harpalus pensylvanicus (39%, 25 of 64), Stenolophus comma (4%, 6 of 136), Cratacanthus dubius (50%, 1 of 2), Clivina bipustulata (50%, 1 of 2), and Cyclotrachelus sodalis (20%, 1 of 5). The highest proportion of Bt-endotoxin uptake was 4–6 weeks post-anthesis. Only one species, H. pensylvanicus (5%, 4 of 75), screened positive for Cry1Ab from the stacked line, despite similar expression of this endotoxin in plant tissue harvested from both lines. This difference in Cry1Ab uptake could be due to changes in the non-target food web or differential rates of Bt-endotoxin decay between genetic events. This study has quantified the differential uptake of Cry1Ab Bt-endotoxin by the carabid community across multiple transgenic events, thus forming the framework for future risk-assessment of transgenic crops.  相似文献   

16.
Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.  相似文献   

17.
Genes encoding cry1Ab and cry1Ac δ-endotoxins from the bacterium, Bacillus thuringiensis (Bt) that have been incorporated in several crops to enhance their resistance to insect pests may possibly influence the activity and abundance of natural enemies of insect pests. The ladybird beetle, Cheilomenes sexmaculatus (L.) might ingest Bt toxins expressed by genetically modified plants by feeding on aphids, early instar larvae of lepidopterans, and other soft bodied insects feeding on transgenic plants. Therefore, we studied the effects of Cry1Ab and Cry1Ac Bt toxins on C. sexmaculatus under direct and indirect exposure conditions. For direct exposure, the neonate C. sexmaculatus larvae were fed either pure 2M sucrose (control) or sucrose solution containing Cry1Ab or Cry1Ac (0.1%), and on alternate days with aphids till pupation. Direct exposure of C. sexmaculatus larvae to Bt toxins resulted in reduced larval survival and adult emergence as compared to the controls, which might be due to long-term direct exposure. However, there were no adverse effects of the Bt toxins on C. sexmaculatus when the larvae were reared on Aphis craccivora Koch fed on different concentrations of Cry1Ab or Cry1Ac in the artificial diet. A significant and positive correlation was observed between the presence of Bt toxins in aphids, and coccinellid larvae and adults (r=0.53** to 0.86**). The results suggested that a direct exposure to Bt toxins expressed in transgenic plants or predation on H. armigera on Bt-transgenic plants will have little effect on the activity and abundance of the ladybird, C. sexmaculatus.  相似文献   

18.
Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.  相似文献   

19.
The potential effects of insect‐resistant, genetically engineered (GE) crops on non‐target organisms, especially on predators and parasitoids, must be evaluated before their commercial cultivation. The effects of GE maize that produces Cry1Ac toxin on the parasitoid Macrocentrus cingulum were assessed by direct bioassay and indirect bioassay. In the indirect bioassay, parasitism rate, cocoon weight and the number of M. cingulum progeny produced per host were significantly reduced when M. cingulum‐parasitized Cry1Ac‐susceptible Ostrinia furnacalis were fed a diet containing purified Cry1Ac; however, life‐table parameters of M. cingulum were not adversely affected when the same assay was performed with Cry1Ac‐resistant O. furnacalis. These results indicated that the detrimental effects detected with a Cry1Ac‐susceptible host were mediated by poor host quality. In a direct bioassay, no difference in life‐table parameters were detected when M. cingulum adults were directly fed a 20% honey solution with or without Cry1Ac; however, survival and longevity were significantly reduced when M. cingulum adults were fed a honey solution containing potassium arsenate, which was used as a positive control. The stability and bioactivity of Cry1Ac toxin in the food sources and Cry1Ac toxin uptake by the host insect and parasitoid were confirmed by enzyme‐linked immunosorbent assay and sensitive‐insect bioassays. Our results demonstrate that M. cingulum is not sensitive to Cry1Ac toxin at concentrations exceeding those encountered in Bacillus thuringiensis maize fields. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non‐target organisms and will be useful for assessing other non‐target impacts.  相似文献   

20.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号