首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multiple-embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) has potential to be developed into a microbial bioinsecticide because the host range includes several economic pests. We tested spray-dried AfMNPV formulations after storage for insecticidal activity based on bioassays with neonate Trichoplusia ni (Hübner). Eight experimental lignin-based spray-dried formulations, a glycerin-based formulation, and an unformulated sample were made with virus stock from three commercial production lots. Samples of these formulations were stored at 30 degrees C in individually sealed sample containers for destructive sampling after 1, 3, and 6 mo whereas the remaining product was stored in glass jars under refrigeration for up to 30 mo. Spray drying did not significantly reduce the initial LC50s of AfMNPV in experimental formulations compared with unformulated virus that was not spray dried. Refrigerated storage for 6 mo did not significantly lower virus activity of formulated samples compared with the unformulated AfMNPV stored frozen, while samples stored for 30 mo had higher LC50 values determined by both droplet and leaf feeding assays. When stored at 30 degrees C, most formulations (22 of 24) maintained insecticidal activity for 3 mo, but most (21 of 24) lost significant activity after 6 mo of storage. The glycerin-based formulation also lost activity within 6 mo of storage at 30 degrees C when compared with frozen unformulated virus, but did not lose activity when stored refrigerated for up to 30 mo. These formulations were evaluated after 7 mo at 4 degrees C for residual insecticidal activity when applied to field grown cabbage. Insecticidal activity was determined against T. ni neonates for treated leaf samples collected at 3, 7, 27, and 51 h after application of 2.5 x 10(12) obs/ha. Field tests showed no differences in activity among samples of stored formulations and one freshly made formulation. Spray-dried formulations had significantly higher insecticidal activity (67.5% mortality) compared with the unformulated treatment (30% mortality) sampled 3 h after application. At 3, 7, and 27 h after application, the spray-dried formulations had higher residual activity (67%, 59%, and 42% mortality, respectively), compared with the commercial glycerin-based formulation (61%, 38%, and 23% mortality, respectively). These experiments demonstrated that AfMNPV in lignin-based spray-dried formulations had a shelf-life of up to 3 mo at 30 degrees C and up to 30 mo at 4 degrees C, and with longer residual insecticidal activity in the field compared with unformulated or a glycerin formulation.  相似文献   

2.
A multiply embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) can lose insecticidal activity during months of dry storage in ambient room conditions. We tested the spray-dried AfMNPV formulations after storage for up to 1 year at room temperatures for insecticidal activity against neonate Trichoplusia ni (Hübner). Experimental formulations were made using combinations of corn flours, lignin, and sucrose, and were selected based on previous work which demonstrated that these formulations resisted solar degradation in field experiments. Twelve experimental formulations (organized in three groups of four formulations) compared the effect of (1) the ratio of formulation ingredients (lignin and corn flour) to virus concentration, (2) different sources of lignin, or (3) different corn flours and sugar. Based on a single-dose plant assay with these 12 formulations, none of the formulations lost significant activity due to the drying process, when compared with the unformulated wet AfMNPV. Samples of the 12 dried formulations were stored at room (22+/-3 degrees C) and refrigerated (4 degrees C) temperatures. Insecticidal activity (LC(50)) was determined with a dosage-response assay for neonates fed on treated cotton-leaf disks. After 6 (or 9) and 12 months storage, refrigerated samples maintained insecticidal activity better than corresponding samples stored at room temperatures with LC(50)s that averaged 2.0 x 10(6) polyhedral inclusion bodies per milliliter (pibs/ml) for refrigerated samples and 5.4 x 10(6) pibs/ml for samples stored at room temperatures. Compared with unformulated stock virus stored frozen, six formulations stored at room temperature and 10 formulations stored in the refrigerator did not lose significant insecticidal activity after 1 year based on overlapping 90% confidence intervals. Changing the ratio of virus to formulation ingredients did not provide a clear trend over the range of concentrations tested, and may be less important for shelf-life of virus activity compared with formulations made with different ingredients. Two of the four formulations made with different lignins were about 15 times less active after 1 year at room temperature compared with refrigerated samples, indicating that specific formulation ingredients can affect storage stability. Formulations that contained sugar generally maintained activity during storage better than formulations without sugar. Unformulated virus stock maintained insecticidal activity (ranged from 0.20 to 2.5 x 10(6) pibs/ml) better during storage than dried formulations with LC(50)s that ranged from 0.39 to 27 x 10(6) pibs/ml. Unformulated virus stock, which is essentially a suspension of virus occlusion bodies in homogenized insect cadavers, did not lose activity when stored at refrigerated or room temperature. We believe that stability of AfMNPV insecticidal activity during storage as dry formulations is related to the general composition of the formulation and that sugar may play a critical role in maintaining insecticidal activity.  相似文献   

3.
Nuclear polyhedrosis viruses such as the one isolated from the celery looper, Anagrapha falcifera (Kirby) (AfMNPV), have the potential to be successful bioinsecticides if improved formulations can prevent rapid loss of insecticidal activity from environmental conditions such as sunlight and rainfall. We tested 16 spray-dried formulations of AfMNPV to determine the effect of different ingredients (e.g., lignin, corn flour, and so on) on insecticidal activity after simulated rain and simulated sunlight (at Peoria, IL) and natural sunlight exposures (at Tifton, GA). The most effective formulation contained pregelatinized corn flour and potassium lignate, which retained more than half of its original activity after 5 cm of simulated rain, and almost full activity after 8 h of simulated sunlight. In Georgia, formulations made with and without lignin were compared for persistence of insecticidal activity when exposed to natural sunlight. In addition, the effect of fluorescent brighteners as formulation components and spray tank additives was tested. Results showed that the formulations with lignin had more insecticidal activity remaining after sunlight exposure than formulations without lignin. The inclusion of brighteners in the formulation did not improve initial activity or virus persistence. However, a 1% tank mix significantly enhanced activity and improved persistence. Scanning electron micrographs revealed discreet particles, and transmission electron micrographs showed virus embedded within microgranules. Results demonstrated that formulations made with natural ingredients could improve persistence of virus-based biopesticides.  相似文献   

4.
The effect of spray dryer processing parameters on the product yield and insecticidal activity of baculovirus was evaluated. Spray-dried samples of a granulovirus (GV) from Pieris rapae (L.) and a multiple nucleopolyhedrovirus (MNPV) from Anagrapha falcifera (Kirby) were prepared using two dryer-atomiser configurations (rotary atomiser and two-fluid spray atomiser), four drying temperatures (50–100°C outlet temperatures) and two encapsulating formulations (lignin and methacrylic acid polymer). The samples were evaluated based on yield and insecticidal activity under laboratory conditions. The two atomising configurations produced similar outlet temperatures for dryer stock feed rates of 4.12 and 20 ml/min when processed using increasing inlet temperatures. The atomiser selection significantly affected the physical properties like the product yield; the microparticles produced with a two-fluid spray atomiser had lower product yields (57.8 ± 18.80% – 74.6 ± 4.26%) when compared with paired samples produced with a rotary-disc atomiser (58.1 ± 7.13% – 82.6 ± 3.12%). Spray drying reduced insecticidal activity of the GV but did not significantly reduce insecticidal activity of the MNPV when compared with samples that were not dried. Among dried samples, the spray dryer processing parameters (atomiser, drying temperatures and formulation) had minimal effect on the insecticidal activity of either baculovirus. The versatility of spray drying for processing baculoviruses was demonstrated by identifying parameters that improve process yield while having minimal impact on insecticidal activity.  相似文献   

5.
We investigated the influence of cytochrome c on apoptosis induced by Anagrapha (Syngrapha) falcifera multiple nuclear polyhedrosis virus (AfMNPV). Microscopic observation revealed that infection of SL-1 cells with AfMNPV resulted in apoptosis, displaying apoptotic bodies in fluorescent-stained nuclei of AfMNPV-infected SL-1cells. Western blot analysis demonstrated that AfMNPV-induced apoptosis in insect SL-1 cells was significantly inhibited by cyclosporin A which blocked a translocation of cytochrome c from the mitochondria to the cytosol. As determined by using AC-DEVD-AFC as substrate, the activity of caspase-3 in AfMNPV-induced cells was detected as early as 4h post infection, gradually increased with time extension, and reached a highest level after 16h of infection. However, activity of caspase-3 in apoptotic cells decreased in the presence of cyclosporin A (30microM), indicating that activation of caspase-3 in SfaMNPV-induced cells was dependent on the release of cytochrome c from the mitochondria. In addition, cyclosporin A could markedly inhibit mitochondrial transmembrane potential (DeltaPsim) disruption in undergoing apoptotic cells. These data indicate that cytochrome c plays a key role in AfMNPV-induced apoptosis in S. litura cells and may be required for caspase activation during the induction of apoptosis.  相似文献   

6.
The entomopathogenic fungus, Beauveria bassiana, is highly susceptible to the damaging effects of solar radiation. This study demonstrates protection from simulated solar radiation by coating B. bassiana (GHA) spores with lignin and effects on pathogenicity to Lygus lineolaris (Palisot de Beauvois) adults in direct spray and contact uptake bioassays. Spores were coated with either lignin or cross-linked lignin by spray drying to produce spore coatings of high and low water solubility, respectively. Non-coated spores and the two spore coating treatments were suspended in either water (0.04% Silwet L77) or oil (Orchex 692) to produce six formulations. Rates of loss in spore viability under simulated solar radiation were approximately ten times lower for the three formulations in which spores remained coated in suspension (cross-linked lignin in water, cross-linked lignin in oil, and lignin in oil). However, these three formulations were the least pathogenic. Estimates of LC50 and LC75 values for the most pathogenic formulation (non-coated in oil) were 5 and 12 times lower, respectively, than the least pathogenic formulation (cross-linked lignin in oil), but these differences were not significant. The three lignin-coated formulations that provided the greatest UV protection were also the least pathogenic based on LT values, which were significant. Overall, L. lineolaris mortality was approximately 80 times less when exposed to treated broccoli rather than sprayed directly, based on LC50 values. If the contribution of spore uptake from plant surfaces to L. lineolaris mortality is similarly low under field conditions, then improving persistence may be less important for improving efficacy. However, under control conditions where solar radiation significantly impacts mycoinsecticide efficacy, the improved persistence of lignin coating formulations may outweigh negative effects on pathogenicity.  相似文献   

7.
The identification of effective solar protectants for field application of the codling moth, Cydia pomonella (L.), granulovirus (CpGV) is of interest to improve its efficacy and commercial viability as a biological pesticide. We evaluated several materials as potential adjuvants to protect CpGV from ultraviolet degradation. In laboratory tests with a solar simulator (9.36×106 J/m2), the addition of kaolin clay (Surround® WP at 3 and 6%, w/v), a paraffin wax-based emulsion (SPLAT? at 5%, v/v), and a bark extract trans-cinnamaldehyde combined with a film agent (both at 1%, v/v) did not significantly reduce larval entries or increase larval mortality in irradiated apples that were treated with a commercial CpGV product (Cyd-X). In semi-field tests in an apple orchard, a spray-dried lignin formulation containing CpGV (6.57×1012 OBs/ha) and a lignin-based adjuvant used with Cyd-X (both applied at 4.7–5.6 kg lignin/ha) significantly improved residual activity of CpGV compared with Cyd-X alone applied at the same rate. However, the benefits were short lived and could not be detected after 7 days. In orchard tests, we evaluated two additional refined lignin-products (Lignosulfonate and Vanisperse? CB at 5.61 kg/ha) and two particle film materials (kaolin clay, ‘Cocoon?’, and calcium with boron ‘Eclipse?’) as adjuvants for UV protection of Cyd-X (6.57×1012 OBs/ha) in tests against a dense codling moth infestation. Although all virus treatments were highly effective (causing ≥90% larval mortality), no significant effects of the adjuvant treatments could be detected. In these latter tests, the use of a silicone based wetting agent at 0.025% (v/v) may have been beneficial at increasing mortality among older larvae inside the fruit.  相似文献   

8.
BACKGROUND: Pulmonary gene therapy requires aerosolisation of the gene vectors to the target region of the lower respiratory tract. Pulmonary absorption enhancers have been shown to improve the penetration of pharmaceutically active ingredients in the airway. In this study, we investigate whether certain absorption enhancers may also enhance the aerosolisation properties of spray-dried powders containing non-viral gene vectors. METHODS: Spray-drying was used to prepare potentially respirable trehalose-based dry powders containing lipid-polycation-pDNA (LPD) vectors and absorption enhancers. Powder morphology and particle size were characterised using scanning electron microscopy and laser diffraction, respectively, with gel electrophoresis used to assess the structural integrity of the pDNA. The biological functionality of the powders was quantified using in vitro cell (A549) transfection. Aerosolisation from a Spinhaler dry powder inhaler into a multistage liquid impinger (MSLI) was used to assess the in vitro dispersibility and deposition of the powders. RESULTS: Spray-dried powder containing dimethyl-beta-cyclodextrin (DMC) demonstrated substantially altered particle morphology and an optimal particle size distribution for pulmonary delivery. The inclusion of DMC did not adversely affect the structural integrity of the LPD complex and the powder displayed significantly greater transfection efficiency as compared to unmodified powder. All absorption enhancers proffered enhanced powder deposition characteristics, with the DMC-modified powder facilitating high deposition in the lower stages of the MSLI. CONCLUSIONS: Incorporation of absorption enhancers into non-viral gene therapy formulations prior to spray-drying can significantly enhance the aerosolisation properties of the resultant powder and increase biological functionality at the site of deposition in an in vitro model.  相似文献   

9.
BACKGROUND: Pulmonary delivery of gene therapy offers the potential for the treatment of a range of lung conditions, including cystic fibrosis, asthma and lung cancer. Spray-drying may be used to prepare dry powders for inhalation; however, aerosolisation of such powders is limited, resulting in poor lung deposition and biological functionality. In this study, we examine the use of amino acids (arginine, aspartic acid, threonine, phenylalanine) to enhance the aerosolisation of spray-dried powders containing model non-viral gene vectors. METHODS: Lipid/polycation/pDNA (LPD) vectors, in the presence or absence of amino acids, were dispersed in lactose solutions, and spray-dried to produce appropriately sized dry powders. Scanning electron microscopy and laser diffraction were used to determine particle morphology and diameter, respectively. Gel electrophoresis was used to examine the influence of amino acids on the structural integrity of the LPD complex. In vitro cell (A549) transfection was used to determine the biological functionality of the dry powders, and the in vitro aerosolisation performance was assessed using a multistage liquid impinger (MSLI). RESULTS: Both gel electrophoresis and in vitro cell transfection indicated that certain amino acids (aspartic acid, threonine) can adversely affect the integrity and biological functionality of the LPD complex. All amino acids significantly increased the aerosolisation of the powder, with the arginine and phenylalanine powders showing optimal deposition in the lower stages of the MSLI. CONCLUSIONS: Amino acids can be used to enhance the aerosolisation of spray-dried powders for respiratory gene delivery, allowing the development of stable and viable formulations for pulmonary gene therapy.  相似文献   

10.
A cell line from Trichoplusia ni (TN-CL1) infected with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV-HPP) and a cell line from Helicoverpa zea (BCIRL-HZ-AM1) infected with the Helicoverpa zea single nucleopolyhedrovirus (HzSNPV/BrCL2) were subjected to ultraviolet-B (UV-B) irradiation at a predetermined level of exposure that would inactivate greater than 95% of the virus suspended in the liquid. The working hypothesis was that the homologous insect cells would utilize their inherent deoxyribonucleic acid (DNA) repair mechanism(s) to prevent, repair, or at least mitigate the damaging effects of UV-B light on viral DNA synthesis. We attempted to determine this by using infected cells that were subjected to UV-B irradiation at different postinoculation periods under two experimental conditions of exposure: (1) shielded, and (2) nonshielded. Of the two cell lines infected with their respective homologous viruses, the virus from TN-CL1 cells was the least sensitive to UV-B light because the extracellular virus (ECV) and occlusion body (OB) levels of virus-infected TN-CL1 cells were higher than those of the virus-infected BCIRL-HZ-AM1 cells. Production of ECV and OB from both cell lines was lower in the exposed, nonshielded treatment than in the exposed, shielded treatment. However, AcMNPV-HPP was produced in enough quantity to indicate that TN-CL1 might impart a level of protection to the virus against UV light.  相似文献   

11.
本研究旨在研制一种基于黄花菜的固体饮料。以黄花菜为主要原料,以感官评分、冲泡性能为指标,采用响应面试验对黄花菜固体饮料的配方和干燥工艺进行优化。试验表明,黄花菜固体饮料配方的响应面优化结果为:食盐添加量0. 01%,麦芽糊精添加量2. 0%,马铃薯全粉添加量1. 0%,奶粉添加量4. 5%,黄花菜与水比值1∶9(m∶v);此配方下研制出的黄花菜固体饮料流动性最佳,表征值为72. 855 mm。喷雾干燥的最佳工艺参数是进风温度为180℃,入料流量为1. 5 mL/min;所得样品的感官评分值为94. 2,流动性表征值为71. 65mm,润湿性表征值为27. 75 min。  相似文献   

12.
Retaining biopharmaceutical proteins in a stable form is critical to their safety and efficacy, and is a major factor for optimizing the final product. Freeze‐dried formulations offer one route for improved stability. Currently the optimization of formulations for freeze‐drying is an empirical process that requires many time‐consuming experiments and also uses large quantities of product material. Here we describe a generic framework for the rapid identification and optimization of formulation excipients to prevent loss of protein activity during a lyophilization process. Using factorial design of experiment (DOE) methods combined with lyophilization in microplates a range of optimum formulations were rapidly identified that stabilized lactose dehydrogenase (derived from Lactobacillus leichmanii) during freeze‐drying. The procedure outlined herein involves two rounds of factorially designed experiments—an initial screen to identify key excipients and potential interactions followed by a central composite face designed optimization experiment. Polyethylene glycol (PEG) and lactose were shown to have significant effects on maintaining protein stability at the screening stage and optimization resulted in an accurate model that was used to plot a window of operation. The variation of freezing temperatures and rates of sublimation that occur across a microplate during freeze‐drying have been characterized also. The optimum formulation was then freeze‐dried in stoppered vials to verify that the microscale data was relevant to the effects observed at larger pilot scales. This work provides a generic approach to biopharmaceutical formulation screening where possible excipients can be screened for single and interactive effects thereby increasing throughput while reducing costs in terms of time and materials. Biotechnol. Bioeng. 2009; 104: 957–964. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Reduction of water activity in the formulations of mosquito biocontrol agent, Bacillus thuringiensis var. israelensis is very important for long term and successful storage. A protocol for spray drying of B. thuringiensis var. israelensis was developed through optimizing parameters such as inlet temperature and atomization type. A indigenous isolate of B. thuringiensis var. israelensis (VCRC B-17) was dried by freeze and spray drying methods and the moisture content and mosquito larvicidal activity of materials produced by the two methods were compared. The larvicidal activity was checked against early fourth instars Aedes aegypti larvae. Results showed that the freeze-dried powders retained the larvicidal activity fairly well. The spray-dried powder moderately lost its larvicidal activity at different inlet temperatures. Between the two types of atomization, centrifugal atomization retained more activity than the nozzle type atomization. Optimum inlet temperature for both centrifugal and nozzle atomization was 160 degrees C. Keeping the outlet temperature constant at 70 degrees C the moisture contents for the spray-dried powders through centrifugal atomization and freeze-dried powders were 10.23% and 11.80%, respectively. The LC(50) values for the spray-dried and freeze-dried powders were 17.42 and 16.18 ng/mL, respectively. Spore count of materials before drying was 3 x 10(10) cfu/mL and after spray drying through nozzle and centrifugal atomization at inlet and outlet temperature of 160 degrees C/70 degrees C were 2.6 x 10(9) and 5.0 x 10(9) cfu/mL, respectively.  相似文献   

14.
Commercial formulations of the codling moth, Cydia pomonella L., granulovirus (CpGV) are limited by their short residual activity under orchard conditions in the Pacific Northwest. We evaluated spray-dried lignin-encapsulated formulations of CpGV for improved solar stability based on laboratory bioassays with a solar simulator and in field tests in an infested apple orchard. In laboratory tests, aqueous lignin formulations containing a high dosage of 3 x 10(10) occlusion bodies (OB)/L, with and without the additives titanium dioxide (TiO(2)) and sugar, provided significant solar protection of virus, i.e., mortality of codling moth exposed to lignin formulations that had been irradiated with 9.36 x 10(6) joules/m(2) was 92-94%, compared with 66-67% from a glycerin-stabilized product (Cyd-X) or suspension of pure unformulated virus at the same rates. By comparison, a lower dosage of the lignin formulation (3 x 10(8)OB/L) did not provide significant solar protection. Equivalent dosage-dependent patterns in solar protection were observed in further tests with the lignin formulation, when an intermediate (3 x 10(9)OB/L) as well as the low dosage provided no solar protection. Equivalent rates of a blank lignin formulation (containing no virus) did not affect larval mortality, suggesting a protective effect of the lignin on the virus at the high rate. The use of several spray adjuvants, 'NuFilm-17' and 'Organic Biolink' (sticker-spreaders at 0.06% v/v), 'Raynox' (sunburn protectant at 5% v/v), and 'Trilogy'(neem oil at 1% v/v) did not provide solar protection of a commercial CpGV preparation in laboratory tests. In season long orchard tests (Golden Delicious), the lignin formulation of CpGV applied at 6.57 x 10(12)OB/ha did not significantly improve control of codling moth or protection of fruit compared with Cyd-X at equivalent rates. Our studies show that lignin-based CpGV formulations provided solar protection at relatively high virus dosages. The testing of lignin formulations containing reduced virus concentrations may allow virus solar protection to be achieved at more economical rates.  相似文献   

15.
The stability of allyl sulfide, an organosulfur compound present in garlic oil, in its α-, β-, and γ-cyclodextrin inclusion complexes was investigated under various storage conditions. The complexes of cyclodextrins and allyl sulfide were prepared by spray drying. The storage temperature, relative humidity, and initial moisture content of the inclusion complex had different effects on the release rate of allyl sulfide. Allyl sulfide in α-cyclodextrin complexes had a lower release rate than in β- and γ-cyclodextrin complexes at 100 °C and at 50 °C under 6, 40, 54, and 73% relative humidity. The initial moisture content affected only the release rate of allyl sulfide from α-cyclodextrin complexes. The release behavior of allyl sulfide can be correlated with the first-order release rate equation with a normal Gaussian distribution of free energy of activation of release rate constant. The results indicated α-cyclodextrin is a suitable material for controlled release of allyl sulfide.  相似文献   

16.
17.
The effect of an optical brightener on the insecticidal activity of a Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) nucleopolyhedrovirus (SpliNPV) were examined in three instars of S. littoralis. LD50 values of the SpliNPV were reduced from 33 to <5, 73 to 5.7 and 342 321 to 288 412 occlusion bodies for second, third and fourth instars, respectively, by the addition of 1% Tinopal UNPA-GX. Relative potencies were >66, 12.8, and 1.2 for second-. third- and fourth-instar S. littoralis larvae, respectively. Relative mortality between the treatments with and without the brightener decreased from third- to fourth-stage larvae. In terms of speed of kill, the ST50 values of the baculovirus-infected larva were reduced from 210 to 159, 213 to 147, and 207 to 165 h for second-, third- and fourth-instar larvae, respectively, by the addition of the optical brightener at biologically equivalent doses.  相似文献   

18.
《菌物学报》2017,(10):1415-1426
为了提高蝉拟青霉122菌株中N~6‐(2‐羟乙基)腺苷(HEA)的产量。采用静置液体培养方法,以HEA产量为指标,筛选得到122菌株在查氏培养基上的HEA产量优于沙氏和PD培养基;以查氏培养基为基础培养基,在26℃培养40d时,HEA产量达到最大;在黑暗条件培养优于光照条件培养;最优碳源是蔗糖和葡萄糖;最优氮源是磷酸氢二铵;最优无机盐是KH_2PO_4;最优前体物为次黄嘌呤;最适氨基酸为L‐谷氨酸。正交实验结果表明蔗糖是影响122菌株产HEA的最主要的因子,在筛选出的优化培养基上得到122菌株HEA的最大产量为(130.22±0.60)mg/L,较优化前HEA的产量提高9.73倍。  相似文献   

19.
Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 × 106 cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) cross-reacted with re-PNA. The subunit molecular weight (30kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号