首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mammalian somatic "cell cycle" mutant defective in G1   总被引:5,自引:0,他引:5  
Variants or “mutants” temperature-sensitive (ts) for growth have been isolated by selection from a near-diploid mouse cell line. Thus far. 10 ts mutants which grow normally at 33° C, but not at 39° C, have been isolated. These ts mutants were then studied to determine if any manifested their defect at a unique point or stage in the cell cycle. This type of ts mutant is termed a “cell cycle” mutant. The first screen involves observing individual cells of an asynchronous culture for residual division after a shift from 33° C (permissive temperature) to 39° (nonpermissive temperature). A cell cycle mutant should show some fraction of the cells dividing only once at a normal rate after the shift. The ts variant B54 met this first criterion for a cell cycle mutant (i.e., 50% residual division) and was further analyzed. The second screening technique monitors (1) the rate of entry into S, (2) the length of G2, and (3) the rate and duration of cells entering mitosis after a shift of an asynchronous culture to 39°. This experiment with B54 revealed that cells in G1 at the time of the shift to 39° failed to enter S while cells already into S completed the cycle at 39°. These results suggest that B54 is defective in a G1 function which is required for entry into S, but which is no longer needed once cells have entered S. Other results are presented which also support this hypothesis. In addition the ts function of B54 is apparently required for recovery from a “high density” G1 arrest.  相似文献   

2.
Three different temperature sensitive mutants derived from the Syrian hamster cell line BHK 21 were found to have greatly reduced DNA synthesis at the non-permissive temperature. These mutants are distinct by complementation analysis and behave at the non-permissive temperature as cell cycle traverse defective mutants. Microfluorometric analysis of mutant populations arrested at the non-permissive temperature shows an accumulation of cells with G1 DNA content. Mutants ts 13 and ts HJ4 synchronized in G1 by serum or isoleucine deprivation and shifted to the non-permissive temperature at the time of release do not enter the S phase, while in the case of mutant ts 11 preincubation at the non-permissive temperature before release is required to completely prevent its entry into S. Ts 13 and ts 11 are able to traverse the S phase at the non-permissive temperature when synchronized at the boundary G1/S; in this case, preincubation of ts 11 at the non-permissive temperature before release does not affect the ability of these cells to perform DNA synthesis. On the other hand, ts HJ4 appears to traverse S only partially when tested under similar conditions. Temperature shift experiments of mutant populations at different times after isoleucine synchronization suggest that ts 13 and ts 11 are blocked at the non-permissive temperature in early G1, whereas ts HJ4 is probably affected near the initiation of DNA synthesis, or in some early S function.  相似文献   

3.
Ts-131b, one of the temperature-sensitive (ts) mutants isolated from mouse FM3A cells, was found to be defective in DNA replication at a non-permissive temperature. After the cells were transferred to 39.5 °C, the cell number increased by only 10% and the rate of incorporation of precursors into cellular DNA decreased rapidly. Cell cycle analysis by a flow cytometric method with the cells incubated at 39.5 °C revealed that progression of the cells through the S phase was inhibited and most of the cells were arrested in the S phase. To study the defect in DNA replication of this ts-mutant at 39.5 °C, DNA-fiber autoradiography was performed to measure the rate of DNA-chain elongation. The results showed that the rate of DNA-chain elongation was decreased at 6 h after the temperature shift. However, since the decrease in the rate of DNA-chain elongation was not sufficient to account for the decrease in the rate of incorporation of the precursors, it was suggested that there was also a decrease in the rate of initiation of DNA replication at some of the replicon origins.  相似文献   

4.
Temperature-sensitive mutants producing L-serine efficiently from glycine were obtained from the facultative methylotroph Pseudomonas MS 31. Forty-five mutant strains showed adequate growth on methanol at 30°C but little or no growth at 37°C. Fourteen of these mutants produced L- serine more efficiently than the wild-type strain. The typical mutant strain ts 162 showed a high conversion rate in glycine-to-L-serine when the cultivation temperature was changed from a permissive (30°C) to non-permissive state (38?42°C) together with the addition of glycine and methanol after adequate growth. The mutant strain accumulated 6.8 mg L-serine from 12 mg glycine per ml culture under optimum conditions. The reduction of L-serine degrading activity in the mutant strain seemed to contribute to the high productivity of L-serine.  相似文献   

5.
Four temperature-sensitive (ts) mutants of rat 3Y1 cells (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) are arrested at 39.8°C mainly with a 2N DNA content (temperature-arrested cells). The states of these cells were compared with findings in case of cells arrested at 33.8°C at saturation density (density-arrested cells), with regard to the ability to enter S phase after release from arrest or after serum stimulation at 39.8°C. With the 3Y1tsD123, the ts defect is an event which seems essential for the initiation of S phase and occurs after mitosis but not after release from the density arrest. The defect in 3Y1tsF121 related to the efficiency of utilization of serum component(s). In case of 3Y1tsG125, the state of temperature arrest appeared to locate between the state of density arrest and the beginning of S phase. There was no significant difference between the density- and the temperature-arrested cells, in case of 3Y1tsH203.  相似文献   

6.
A temperature-sensitive (ts) mutant, designated tsFT210, was isolated from a mouse mammary carcinoma cell line, FM3A. The tsFT210 cells grew normally at 33 degrees C (permissive temperature), but more than 80% of the cells were arrested at the G2 phase at 39 degrees C (non-permissive temperature) as revealed by flow-microfluorimetric analysis. DNA replication and synthesis of other macromolecules by this mutant seemed to be normal at 39 degrees C for at least 10 h. However, in this mutant, hyperphosphorylation of H1 histone from the G2 to M phase, which occurs in the normal cell cycle, could not be detected at the non-permissive temperature. This suggests that a gene product which is temperature-sensitive in tsFT210 cells is necessary for hyperphosphorylation of H1 histone and that this gene product may be related to chromosome condensation.  相似文献   

7.
Two cell lines transformed with temperature sensitive retroviruses were examined for: their ability to grow in low Ca2+ medium, their calmodulin levels and changes in calmodulin acceptor proteins. Both cell lines grow in low Ca2+ medium at the permissive temperature 34°C while both lines did not replicate at the non-permissive temperature 39°C. The NRKLA23 cells have nearly twice as much calmodulin at the permissive temperature than they do at the non-permissive temperature while the 6M2 cells have an equal amount of calmodulin at both temperatures. Both cell lines exhibit changes in the calmodulin acceptor proteins going from the permissive to the non-permissive temperature. We suspect that the changes in the calmodulin acceptor proteins may be involved in the altered Ca2+-sensitivity of growth in the cells going from the permissive to non-permissive temperature.  相似文献   

8.
We have studied the plasma membranes of an SV40-transformed 3T3 cell line temperature sensitive for the transformed growth phenotype (ts H6-15 cells), and have found that they vary little as a function of temperature of cultivation. Analysis by polyacrylamide gel electrophoresis was performed on plasma membranes prepared from ts H6-15 cell cultured at the permissive (32 °C) and non-permissive (39 °C) temperatures and radioactively-labelled in several ways. No significant differences were seen when the electrophoretic patterns of polypeptides of the plasma membranes of ts H6-15 cells, grown through 3–4 generations in medium containing radioactive leucine (32 °C and 39 °C temperatures) were compared. Plasma membranes derived from cells similarly grown in medium with radioactive glucosamine indicated that extensive alterations in the intrinsic glycopeptides occurred in association with alteration in growth phenotype. A shift towards decreased synthesis of large molecular weight (? 100 000–160 000) glycopeptides occurred in cells grown at the temperature of non-transformed growtn (39 °C). A decrease in amount of a 1200 000 molecular weight glycopeptide at 39 °C was the most prominent of these alterations.We have studied the surface exposure of polypeptides and glycopeptides of intact cells grown at 32 and 39 °C, using lactoperoxidase-catalyzed iodination, NaBH4 reduction of galactose oxidase-treated cells, and metabolic-labelling with glucosamine of trypsin-sensitive molecules. We found no major qualitative differences between whole cell extracts or between plasma membrane preparations of cells cultivated at the permissive and non-permissive temperatures. Of special interest was the observation that the formation and surface exposure of a trypsin-sensitive, 240 000 molecular weight polypeptide appeared not to be ts in ts H6-15 cells. The significance of these observations will be discussed.  相似文献   

9.
Temperature sensitive (ts) SV40 transformed mouse fibroblasts (tsSV3T3) express their transformed phenotype in vitro when growing at 32° C but not when growing at 39° C1. Viral mRNA is, however, apparently transcribed at 39° C, for SV40 specific T-antigen can be demonstrated and viral mRNA can be found by nucleic acid hybridization: Fusion-rescue experiments show that the transforming virus is wild type but tsSV3T3 cells cannot be re-transformed at 39° C with high multiplicity SV40. This suggests that the temperature sensitive behaviour stems from a cellular rather than a viral mutation. The question then arises of the stringency with which these ts transformants control the expression of viral transformation functions at 39° C.  相似文献   

10.
Summary We examined cellular protein content in four temperature-sensitive (ts) mutants of rat 3Y1 fibroblasts (3Y1tsD123, 3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) under various conditions of culture that affect cell proliferation. When proliferation of the ts mutants was inhibited at a nonpermissive temperature (39.8°C) in the G1 phase, prominent accumulation of cellular protein occurred in three mutants (3Y1tsF121, 3Y1tsG125, and 3Y1tsH203) but not in 3Y1tsD123. The over-accumulation of protein at 39.8°C in the former three mutants was inhibited at high cell densities. At low cell densities there was an upper limit in the protein accumulation at 39.8°C. When the three mutants, proliferation-arrested at high cell densities at 33.8°C, were replated sparsely in fresh medium and shifted to 39.8°C, proliferation was completely inhibited whereas over-accumulation of protein occurred. These results indicating dissociation of protein accumulation and cell proliferation suggest that the two events are regulated by different mechanisms. This work was supported in part by a Grant-in-Aid for Encouragement of Young Scientists (1984) to K. Y. from the Ministry of Education, Science, and Culture, Japan.  相似文献   

11.
Temperature-sensitive (ts) mutants of the cyanobacteriumAnabaena variabilis ATCC 29413 were isolated following mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and post-treatment with metronidazole at 40°C. Of the 8000 clones isolated and tested, six mutants were conditionally lethal at the restrictive temperature (40°C). All the ts mutants exhibited differences in their rates of growth, chlorophyll content, pigment (phycocyanin and/or chlorophyll) ratios, heterocyst frequency, oxygen evolution and nitrogenase activity at the permissive temperature (28°C). A gradual loss of all the above features occurred after a period of 3 d at 40°C, followed by lysis of the cultures. Cessation of nitrogenase activity was found to be different in the different ts mutants. The temperature-sensitive nature of the mutants is suggested to be due to an impairment in iron metabolism since addition of ferric citrate to cultures at 40°C restored the ability to grow, produce heterocysts and fix nitrogen.  相似文献   

12.
Two heat-sensitive (arrested in G1 at 39.5°C) and two cold-sensitive (arrested in G1 at 33°C) clonal cell-cycle mutants that had been isolated from the same clone (K 21), of the murine mastocytoma P-815 cell line, were tested for thymidine kinase (EC 2.7.1.21) activity. After shift of mutant cells to the nonpermissive temperature, thymidine kinase activity decreased, and minimal levels (i.e., less than 3% of those observed for ‘wild-type’ K 21 cells at the respective temperature) were attained within 16 h in heat-sensitive and after 3–4 days in cold-sensitive mutants, which is in good agreement with kinetics of accumulation of heat-sensitive and cold-sensitive cells in G1 phase. After return of arrested mutant cells to the permissive temperature, thymidine kinase of heat-sensitive cells increased rapidly and in parallel with entry of cells into the S phase. In cultures of cold-sensitive cells, however, initiation of DNA synthesis preceded the increase of thymidine kinase activity by approx. one cell-cycle time. Thymidine kinase activities in revertants of the heat-sensitive and cold-sensitive mutants were similar to those of ‘wild-type’ cells. In ‘wild-type’ K 21 cells incubated at 39.5°C, thymidine kinase activity was approx. 30% of that at 33°C. This difference is attributable, at least in part, to a higher rate of inactivation of the enzyme at 39.5°C, as determined in cultures incubated with cycloheximide. The rapid increase of thymidine kinase activity that occurred after shift of K 21 cells and of arrested heat-sensitive mutant cells from 39.5°C to 33°C was inhibited by actinomycin D and cycloheximide.  相似文献   

13.
Summary The temperature-sensitive carrot cell variant ts11c, arrested in somatic embryogenesis after the globular stage, was characterized. The sensitivity to a shift from 24° C (permissive temperature) to 32° C (non-permissive temperature) is greatest at the globular stage of embryogenesis, while cells proliferating in unorganized fashion and plantlets are not affected. Embryogenesis in ts11c is also arrested at the permissive temperature by replacement of conditioned culture medium with fresh medium. The timing of sensitivity of ts11c to medium replacement coincides with the sensitivity to temperature shift. Both sensitivities are recessive in somatic hybrids between ts11c and wild-type cells. Extracellular glycoproteins synthesized by ts11c at the non-permissive temperature contain much less fucose than those synthesized by the wild type. The glycoproteins synthesized by the variant under non-permissive conditions do not accumulate at the periphery of the embryo, as their wildtype counterparts do, but instead show a diffuse distribution throughout the embryo. The defect in ts11c can be fully complemented by the addition of extracellular wild-type proteins. A revertant of ts11c was isolated that simultaneously reacquired temperature insensitivity and normal glycosylation ability. Collectively, these observations indicate that ts11c is not able to perform proper glycosylation at the non-permissive temperature and suggest that the activity of certain extracellular proteins, essential for the transition of globular to heart stage somatic embryos, depends on the correct modification of their oligosaccharide side-chains.  相似文献   

14.
Normal rat kidney cells (NRK) infected with the temperature-sensitive (ts) transformation mutant of Moloney murine sarcoma virus yielded a clone of cells, 6m2, that exhibited a transformed morphology at 33°C and a normal morphology at 39°C. Transmembrane potential (Em) was measured fluorometrically using a cyanine dye diS-C3-(5). Fluorescence was inversely correlated with Em. Cells at 33°C had lower Em. Em changes were recorded within 15 minutes of temperature shift from 33°C to 39°C in both directions, increasing in the 33°C to 39°C direction and decreasing in the 39°C to 33°C direction. Uninfected NRK cells when shifted under the same condition exhibited small fluorescence changes in the 33°C to 39°C direction. Shifting from 39°C to 33°C resulted in Em changes similar to those in 6m2 cells. Also studied was a cell line infected with a spontaneous revertant of the ts mutant, designated 54-5A4; it was transformed at both temperatures. Shifting from 33°C to 39°C in both directions yielded small changes. Transmembrane potential changes in 6m2 cells precede other transformation-specific changes that occur after a temperature shift.  相似文献   

15.
A temperature-sensitive mutant, designated ts85, was isolated from a mouse mammary carcinoma cell line, FM3A. The ts85 cells grew at 33 °C (permissive temperature) with a doubling time of 18 h, which was almost the same as with wild-type cells, whereas the cell number scarcely increased at all at 39 °C (non-permissive temperature). When the ts85 cells were shifted from 33 to 39 °C, their DNA synthesis fell to below 1% of the initial value in 14 h. RNA or protein synthesis, however, was maintained at the initial levels for at least 14 h at 39 °C. Cytofluorometric analysis of asynchronous cultures and studies with synchronous cultures suggested that the bulk of the cells cultured at 39 °C for 12–18 h were arrested in late S and G2 phases. Electron microscopic observations revealed that chromatin was abnormally condensed into fragmented and compact forms, particularly around nucleoli, in about 80% of cells of an asynchronous culture incubated at 39 °C for 16 h. Cells in mitosis were not detected in such cultures and nuclear membrane and nucleoli were still intact. Such abnormal chromosome condensation was not observed in the ts85 cells at 33 °C or in wild-type cells at either temperature. Since these findings suggest that a ts gene product of ts85 cells is necessary for chromosome condensation, ts85 cells may represent a useful tool for establishing the mechanisms of chromosome condensation. The interrelationship between abnormal chromosome condensation and reduction in DNA synthesis of the ts85 cells is discussed.  相似文献   

16.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

17.
The onset and rate of semiconservative DNA replication were measured in stimulated cultured rat fibroblasts and their Rous sarcoma virus-transformed derivatives after a period of serum deprivation. Rat-1 (tsLA24/RSV) cells initiated DNA synthesis following a shift to the permissive temperature or addition of serum at the non-permissive temperature. Their rate of DNA replication was unaffected by the presence of serum at the permissive temperature, however, there was a serum requirement at the non-permissive temperature. The transition probability was less at the permissive temperature, independent of serum, than at the non-permissive temperature in the presence of serum. The amount of DNA induced to replicate by addition of serum at the non-permissive temperature or by a shift to the permissive temperature was similar. Using the untransformed Rat-1 cells and these cells transformed by wild-type RSV (Rat-1 (wt/RSV)), it was confirmed that the rate of entry into S phase (transition probability) was always lower in the transformed cell line at both 39° and 35°. In both cell lines the rate of DNA replication was independent of temperature, but the onset was delayed at the lower temperature. These results indicate that in the cell lines examined, (1) serum was able to commit the cells to replicate DNA (alter the transition probability) in both transformed and untransformed cells, but the transforming function was able to supplant a serum-dependent process during G1 necessary for the initiation of DNA replication, and (2) the effects of the transforming function and serum factor(s) on the alteration of the transition probability are not additive, suggesting that the transforming function initiates a process which acts at the level of the commitment to DNA replication which may render the normal serum-related control mechanisms ineffective in the regulation of growth.  相似文献   

18.
A temperature-sensitive mutant, ts2, of murine leukemic cells (L5178Y) loses its viability gradually at the non-permissive temperature (39 °C) but resumes normal growth when shifted to the permissive temperature (33 °C). At 39 °C the incorporation rate of thymidine is reduced on a per-cell-basis, whereas that of uridine and leucine is unchanged.Autoradiographic study indicates that the fraction of cells which can synthesize DNA decreases steadily with time of incubation at 39 °C. Accumulation of mitotic and multinucleate cells suggests that ts2 cells are defective in both mitosis and cytokinesis. Experiments using synchronized culture demonstrate that the cells shifted up atthe G2, but not at the G1 phase pass through the first mitotic phase normally.  相似文献   

19.
20.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号