首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the longest, most detailed quantitative records of oceanographic change in the Cenozoic is that provided by oxygen isotope measurements made on the tests of foraminifera. As indicated by measurements on benthic foraminifera, the deep waters of the world ocean have undergone an overall cooling of about 10°C in the Cenozoic. This change has been neither monotonic nor gradual. Rather, it is evidenced by a few, relatively rapid increases in the 13O content of the benthic shells. These “steps” in the isotopic record have been associated with major evolutionary changes in the mean state of the deep ocean. The variance around this mean state has also changed through the Cenozoic. From relatively high variance in the Middle Eocene, the oceans showed low variance in the Late Eocene and Oligocene. In the Miocene the variance of the isotopic measurement again increased, reaching a maximum of short duration in the Middle Miocene. This maximum as well as that which occurred during the Late Pliocene and Quaternary, may be attributable to fluctuations in the isotopic composition of the oceans caused by growth and decay of large ice sheets.In the Late Miocene the benthic oxygen isotopes in Atlantic sites less than 3000 m deep have a higher variance than sites at similar depths in the Pacific and Indian Oceans. It is thought that this high variance results from long-term changes in the importance of the cool and salty North Atlantic Deep Water relative to that of the warmer and less saline Antarctic Intermediate Water at Atlantic sites between 1000 m and 3000 m water depth. Such significant differences in benthic isotopic variance between the ocean basins have been demonstrated only in post-Middle Miocene intervals.  相似文献   

2.
Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen–vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 ± 0.432 for Artemisia and 5.379 ± 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 ± 0.012), whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the “Regional Estimates of Vegetation Abundance from Large Sites” (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen–vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO2 concentrations) and implications (such as for land surface–climate feedbacks, carbon storage, and biodiversity) of vegetation change.  相似文献   

3.
In northern China, the Late Miocene-Pliocene red clay in the eastern Loess Plateau fills a gap of climate records between the well-known loess-soil sequences of the last 2.6 Ma and the Miocene loess-soil sequences from the western Loess Plateau. Previous studies indicate that the red clay is also of wind-blown origin, covering the period from ∼ 7-8 to ∼ 2.6 Ma. The red clay therefore provides a good archive to reconstruct paleoecological succession and paleoclimate change. In this study, a palynological investigation was conducted on the late Miocene-Pliocene red clay sequence at Xifeng, central Loess Plateau, which provides new insights into the nature of the evolution of vegetation and climate change from ∼ 6.2 to ∼ 2.4 Ma. Our results show that during this period the central Loess Plateau region was covered mainly by a steppe vegetation, indicating long lasting dry climatic condition. Three vegetational zones were recognized during this period. Zone A (∼ 6.2 to ∼ 5.8 Ma) is characterized by a steppe ecosystem; Zone B (∼ 5.8 to ∼ 4.2 Ma) is characterized by a significant increase of temperate forest plants, indicating a relatively humid regional climate; Zone C (∼ 4.2 to ∼ 2.4 Ma) indicates a typical steppe ecosystem. The vegetation shift at about 4.5-3.7 Ma, when the temperate forest plants decrease, the vegetation gradually changed to typical grassland and even to desert steppe. This is interpreted to represent a drying event. The uplift of the Tibetan Plateau at about 4.5 Ma that resulted in the intensification of the monsoon reversal is thought to have played an important role in this significant ecological change. High-latitude cooling may have partially contributed to the climate shift during ∼ 4.5 to ∼ 3.7 Ma in the Loess Plateau region, and most likely was the driving force for the ecological shift at about 3.7 Ma.  相似文献   

4.
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001–2007) from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1) the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau), temperature is 1–6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2) Even at altitudes of 5000–6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.  相似文献   

5.
A 2700-year high resolution pollen record from annually-varved Sugan Lake in the Qaidam Basin at 2793 m a.s.l was obtained to examine vegetation and climatic change on the NE Tibetan Plateau. Pollen data shows that Sugan Basin was constantly covered by open desert-steppe vegetation dominated by Chenopodiaceae, Artemisia, Poaceae and Ephedra. However, large variations in Artemisia/Chenopodiaceae (A/C) ratios suggest regional moisture fluctuations over the last 2700 years, including a dry and relatively stable climate prior to 300 AD, relatively wet climate from 300 to 1200 AD with variability during 1100-1200 AD, and unstable climate since 1200 AD with relatively moister climate during 1250-1400 AD and 1700-1800 AD. However, other proxies (varve thickness, Chironomid taxa, isotopes of oxygen in precipitated carbonate) show fresher water when regional moisture was lower inferred from A/C ratio. This inconsistency suggests the possible difference of in-lake lithology/environment and regional moisture change. Fresh water into the lake from ice melting on the surrounding mountains might have contributed to the in-lake lithology and environment variation. The effective moisture changes in the Basin are in opposite phases to snow accumulation records from Dunde ice core (5325 m a.s.l) and to the monsoon intensity inferred from Dongge Cave, suggesting that the regional topography might have played an important role in mediating moisture changes at regional scale. Pollen data from Sugan Lake shows the shift of moisture at 1200 AD, from stable to variable conditions. This event is well correlated with other paleoclimate proxies in China and other parts of the world; however, the mechanisms behind these patterns require further investigation.  相似文献   

6.
为分析青藏高原东缘半湿润区不同树种树木生长对气候变化的响应规律,于川西米亚罗林区海拔3000 m左右(低海拔)采集铁杉、岷江冷杉、紫果云杉,海拔4000 m左右林线位置(高海拔)采集岷江冷杉、四川红杉,共计182棵树木年轮样芯,建立了不同树种的树轮宽度年表,对不同树种的年轮指数与各月气候因子进行相关分析.结果表明: 在低海拔处,树木生长与4、5月气温呈负相关,与4、5月降雨呈正相关,受到春季干旱胁迫的影响;但树种之间存在显著差异: 铁杉的生长受春季干旱胁迫影响最严重,岷江冷杉次之,紫果云杉所受影响很小.在高海拔处,树木生长主要受生长季温度的影响,岷江冷杉年轮指数与当年2、7月最低气温呈显著正相关,与上一年10月最高气温亦呈正相关;四川红杉年轮指数与5月最高气温呈显著正相关,但与2月均温、3月最低气温呈显著负相关.近几十年青藏高原东北缘气候有干暖化趋势,如果这种趋势持续发生,低海拔紫果云杉长势将超过铁杉和岷江冷杉;高海拔处的升温更有利于岷江冷杉的生长.  相似文献   

7.
The determination of the evolving palaeoaltitude of the Tibetan Plateau since the India-Eurasia collision underpins our understanding of how orography in central Asia affects the intensity of the monsoon and hence global climate change. Palaeoaltitudes, however, cannot be measured directly and need to be inferred from proxy observations that are usually model-dependent. Differing tectonic models for the behaviour of the lithosphere during continental collision have contrasting implications for the elevation of the plateau. However, two techniques recently employed for determining palaeo-elevation are independent of tectonic models, the first involving the variation with altitude of oxygen isotopes in precipitation and the second involving the change of leaf morphology with moist static energy of the atmosphere.Elevation studies have focused on southern Tibet, largely due to the relative ease of access to the region. There is a remarkable unanimity amongst the diverse techniques applied that the altitude of the southern plateau has not significantly changed since at least the mid Miocene (ca. 15 Ma) arguing for an onset of the monsoon system during or before the early Miocene. A range of tectonic studies suggest that the northern and eastern parts of the plateau are younger geomorphological features, but there are few quantitative constraints of the timing of elevation from these regions of Tibet. Since both the elevation and the surface area of the plateau impact on atmospheric circulation, palaeoaltitude studies need to be extended to chart the increasing areas of elevated land surface through time.  相似文献   

8.
Thick Cenozoic deposits in the Qaidam Basin provide great potential for understanding the tectonic history, paleoclimatic changes, and evolution of the East Asian Monsoon. This study examines the pollen record from the KC-1 core for the interval covering the later Early to Late Miocene (18–5 Ma). Thermophilic taxa percentages are high between 18 and 14 Ma and decrease after this time, a pattern which fits well with the Middle Miocene Climatic Optimum (MMCO) between 18 and 14 Ma and global climatic cooling after 14 Ma. During the same period, xerophytic taxa percentages gradually increase and those of the conifers gradually decrease, suggesting an aridification process in the Qaidam region driven by the gradual strengthening of the East Asian winter monsoon (EAWM) and weakening of the East Asian summer monsoon (EASM). The global climate cooling process appears to have driven the climatic development of the Qaidam Basin region throughout the Miocene, but the uplift of the Tibetan Plateau also contributed.  相似文献   

9.
The climatic impacts of the Tibetan Plateau since the Neogene and the phytogeographic pattern changes of formerly widely-distributed forest communities on the plateau remain poorly constrained. Today, Cercis L. (Fabaceae) is a well-known arborescent genus typically distributed in subtropical to warm temperate zones of the Northern Hemisphere, and Paleogene fossil occurrences from Eurasia and North America show a long history of the genus in mid-low latitudes of the Northern Hemisphere. Here, we describe a fossil species, Cercis zekuensis sp. nov. based on well-preserved fruits from the early Miocene of the northeastern Tibetan Plateau. Detailed morphological comparison (e.g., ventral margin with a veinless wing) of extant and fossil members of Cercis and other genera confirmed validity of the present taxonomic identity. Based on the comparison with extant relatives and their climate preferences, this unexpected occurrence of thermophilic Cercis in northeastern Tibetan Plateau indicates this area had higher temperature and precipitation in the Miocene than today. Integrated with inferred (paleo-)temperature lapse rates, this indicates a low paleoelevation of less than 2.4 km. In contrast with the present-day alpine climate here (~3.7 km), such a low elevation facilitated a more favorable habitat with comparatively high biodiversity and warm temperate forests at that time, as were evidenced by co-occurring megafossils. Moreover, the present existence of Cercis implies the genus was widespread in interior Asia during the early Neogene and shows its modern disjunction or diversification between eastern and central Asia was possibly shaped by the late Cenozoic regional tectonic uplift and consequential environmental deterioration.  相似文献   

10.
A modern pollen rain study was performed in a 300 km-long altitudinal transect (~ 28° N latitude) from 300 to 2300 m elevation. The higher elevation modern communities: epithermal oak–pines, pine–oak forest, pine forest, and mixed conifer forest were easy to distinguish from their pollen content. In contrast, lower elevation subtropical communities: thornscrub and tropical deciduous forest were difficult to separate, because they share many pollen taxa. Nevertheless we identify high frequencies of Bursera laxiflora as an important component of the tropical deciduous forest.Additionally, fossil pollen was analyzed at three sites located between 1700 and 1950 m altitude at ~ 28° latitude north in the Sierra Madre Occidental of northwestern Mexico. The sites were in pine–oak (Pinus–Quercus), pine, and mixed-conifer forests respectively. Shifts in the altitudinal distribution of vegetation belts were recorded for the last 12,849 cal yr BP, and climate changes were inferred. The lowest site (pine–oak forest) was surrounded by pine forest between 12,849 and 11,900 cal yr BP, suggesting a cold and relatively dry Younger Dryas period. The early Holocene was also cold but wetter, with mixed conifer forest with Abies (fir) growing at the same site, at 1700 m elevation, 300 m lower than today. After 9200 cal yr BP, a change to warmer/drier conditions caused fir migration to higher elevations and the expansion of Quercus at 1700 m. At 5600 cal yr BP Abies was growing above 1800 m and Picea (spruce) that is absent today, was recorded at 1950 m elevation. Fir and spruce disappeared from the 1950 m site and reached their present distribution (scattered, above 2000 m) after 1000 cal yr BP; we infer an episodic Holocene migration rate to higher elevations for Abies of 23.8 m/1000 cal yr and for Picea of 39.2 m/1000 cal yr. The late Holocene reflects frequent climate oscillations, with variations in the representation of forest trees. A tendency towards an openness of the forest is recorded for the last 2000 yrs, possibly reflecting human activities along with short-term climate change.  相似文献   

11.
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961–2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of −6°C and −4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961–2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991–2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions.  相似文献   

12.
The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau–lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature‐related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.  相似文献   

13.
The palaeoenvironmental reconstruction of central Tibet is key to understanding the uplift history of the Tibetan Plateau, which had a profound influence on Cenozoic global climate and biotic change. Here we report an amber layer from the lower part of the Dingqing Formation (late Oligocene) in Lunpola of central Tibet, which is the first record of amber from Tibet. Herein we find that Lunpola amber is derived from dipterocarp trees, as determined by gas chromatography-mass spectrometry, which are restricted to and dominant in Asian rainforest nowadays. This amber forest represents the northernmost dipterocarp forest and is consistent with the hypothesis of out-of-India dispersal of Asian dipterocarps. The Lunpola amber most probably was derived from the lower part of the Niubao Formation (early–middle Eocene) and suggests a tropical/subtropical wet forest was present in central Tibet at least before the late Oligocene (probably early–middle Eocene).  相似文献   

14.
The Cenozoic sequence of Ashtart 28 well drilled in the Gulf of Gabes (Tunisia) is the subject of a biostratigraphical study. The samples recovered in cuttings from 390 m and downwards allowed to recognize, above the Late Eocene sediments, a sedimentary series, lithologically diversified, nearly 1600 m thick. Marine Pliocene deposits, generally attesting a low bathymetry, lie unconformably above the Messinian (Oued Bel Khedim formation), which shows the usual features of the Mediterranean confinement. The underlying Messinian pre-evaporitic platform series (Melqart formation), that is over 250 m thick, is typical of a perireefal environment. The sediments assigned to the Tortonian (Somâa Sands formation) are continental and occur unconformably above the approximately 500-metres-thick Middle Miocene strata (Saouaf, Mahmoud, Aïn Grab and Salammbô pars formations). The marine Lower Miocene and Oligocene sediments (Salammbô pars and Ketatna formations), that are more than 300 m thick, lie in continuity under the Middle Miocene. The infralittoral Chattian sequence has especially supplied a diversified assemblage of larger foraminifera recovered in other west-mediterranean basins. Datings were obtained based on planktonic and larger benthic foraminifera (Miogypsinidae, Nummulitidae, Lepidocyclinidae) and by correlations obtained by means of well loggings and lithostratigraphy. Benthic foraminifera, mainly listed for the Miocene and Oligocene, are studied from a systematic, stratigraphic and paleogeographic point of view. The paleoenvironments of deposits are defined for each considered stratigraphic interval. Comparisons are sketched with other drillings of the Gulf of Gabes. Thanks to the numerous data obtained by this detailed study, the Ashtart drilling can serve as a reference for the Tertiary sequence of this part of the Mediterranean domain.  相似文献   

15.
Plant fossils from the Qinghai–Tibetan Plateau (QTP), China are critical to understand not only the diversification history of plants there, but also the paleoenvironmental conditions. Alnus are deciduous trees, mainly distributed in temperate and subtropical regions of Eurasia and North America, and they are well known in the fossil records throughout the Cenozoic in the Northern Hemisphere. We collected numerous well‐preserved Alnus leaf and infructescence fossils from the Lawula Formation (~34.6 Ma with 40Ar/39Ar dating) at the present elevation of 3910 m a.s.l. in the southeastern QTP. Based on detailed morphological comparisons with existing and fossil species, these fossils show closest affinity to Alnus ferdinandi‐coburgii C. K. Schneid., and we refer to these fossils as A. cf. ferdinandi‐coburgii. These specimens comprise the oldest megafossil record of Alnus in the QTP, and provide solid evidence for the distribution of Alnus there as early as the late Eocene. Extant A. ferdinandi‐coburgii is distributed in areas with mean annual temperature values between 9.7 °C and 16.9 °C, and mean annual precipitation values ranging from 896.2 mm to 1161.2 mm; therefore, fossils of A. cf. ferdinandi‐coburgii suggest a much warmer and wetter climate during the late Eocene than today in the southeastern QTP. This finding is consistent with other evidence for continued uplift of the southeastern QTP after the late Eocene that might be due to the eastward extension of the QTP.  相似文献   

16.
The schizothoracine fishes, also known as “mountain carps” are widely distributed in the Qinghai-Tibetan Plateau and its peripheral regions. Although they provide a prime example of high altitude adaptation, the phylogenetic relationships and the divergence times among these carp lineages are still controversial. Moreover, the genetic basis for high altitude adaptation is also poorly understood. In this study, we determined the mitochondrial genomes from two species of the schizothoracine fishes, representing a “morphologically primitive” clade and “morphologically specialized” clade, respectively. The phylogenetic tree and the divergence times were estimated within the evolutionary framework of the entire order Cypriniformes. Our results indicate a polyphylyetic relationship of the schizothoracine fishes and suggest two independent migration events into the Qinghai-Tibetan Plateau: one by the “morphologically primitive” clade in the Late Miocene and another by the “morphologically specialized” clade in the Eocene. Rapid speciation events of each clade from the Late Miocene to the Pliocene correspond to the timing of the geologic acceleration of the Qinghai-Tibetan Plateau. Interestingly, we found evidence for positive selection acting on the protein coding genes in the mitochondrial genomes of the “morphologically specialized” clade, implying a possible genetic basis for high altitude adaptation in this derived lineage of cypriniform fishes.  相似文献   

17.
Wang Y  Čufar K  Eckstein D  Liang E 《PloS one》2012,7(3):e31725
Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.  相似文献   

18.
Variations of tree species composition and community structure and their relationship with environmental variables are described for five sites of the Atlantic rain forest in Picinguaba, southeastern Brazil, distributed along an elevation gradient sampled by plots located at the altitudes of 2, 100, 300, 600 and 1000 m a.s.l. Sampled trees with DBH ≥ 5 cm were identified to species level and their diameter and height were measured. Environmental variables obtained for each plot included 11 topsoil variables and altitude. The residuals of all linear models were tested for spatial structure and multivariate analyses were performed to seek for relationships between the overall species’ abundances and selected environmental variables. Although both forest physiognomy and species’ abundances did change with altitude, this was clearly sharp only from the coastal plain (2 m) to 100 m, and from 600 m to the summit (1000 m). The three mid-slope sites (100, 300 and 600 m) were rather undifferentiated, though they were richer in species and had taller canopy trees. The altitude and the edaphic variables silt, clay, pH and total exchangeable bases (TEB) presented significant correlations with the variations in species’ abundances, while only pH and TEB were significantly correlated with species richness. The present study demonstrates for the first time that the composition and structure of Atlantic Forest can change accompanying the soil and altitude variations over short distances.  相似文献   

19.
中国北方草地植被物候变化及其对气候变化的响应   总被引:1,自引:0,他引:1  
研究草地物候变化对揭示草地生态系统随全球气候变化的响应机制具有重要的科学意义.本研究基于1983—2015年的GIMMS NDVI 3g、气候和数字高程模型(DEM)数据,采用动态阈值法提取北方草地的物候信息[生长季始期(SOS)、生长季末期(EOS)、生长季长度(LOS)],分析北方草地物候的时空变化及LOS对气候的响应.结果表明: 88.9%的像元SOS发生在3月下旬到5月下旬(日序第90~150天),其中,68.1%的像元表现为提前,速率为-1.5~0 d·(32 a)-1;79.7%的像元EOS发生在10月上旬到10月下旬(日序第270~300天),其中,70.3%的像元表现为推迟,速率为0~1.5 d·(32 a)-1;LOS持续在100~140 d,其中,LOS变长的像元占73.7%,速率为0~1.5 d·(32 a)-1.LOS与气温呈显著正相关(R=0.628),与降水呈弱负相关(R=-0.091),并存在明显的空间差异.以海拔2000 m为分界线,低于2000 m时,LOS与海拔呈弱正相关(R=0.235),高于2000 m时,LOS与海拔呈显著负相关(R=-0.861);海拔高于3000 m时,海拔每升高1000 m, LOS缩短约10 d.  相似文献   

20.
张利平  薛燕  郭翔  王明田 《应用生态学报》2020,31(11):3823-3832
利用数字高程模型(DEM)数据、土地覆盖栅格数据、四川省52个站点和4个其他省市站点的气象观测数据,基于美味牛肝菌的生物学特性,结合前人研究成果,系统分析了川西高原山地美味牛肝菌的气候生态适宜性。选取气温、降水、植被等影响因子作为区划指标,应用集优法,通过GIS分析本区美味牛肝菌资源的潜在分布。结果表明: 美味牛肝菌潜在分布区的北界在32° N附近,海拔上限约为3000 m,下限约为800 m,总面积约286.3万hm2,约占研究区整个行政区域面积的9.7%;29° N以南的攀西地区是美味牛肝菌的主要潜在分布区,核心分布区在攀西地区中南部,攀西分布区面积约占全部潜在分布区的90%,其中,适宜区面积约占20%,次适宜面积约占80%。适宜区主要分布于攀西地区雅砻江以东的安宁河流域、海拔1000~2600 m的山区;次适宜区主要是适宜区分别向上、向下延伸到海拔3000和800 m左右的林区;海拔3000 m以上的高原高山区和海拔800 m以下的干热河谷区为不适宜区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号