首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian DNA polymerase kappa (pol kappa), a member of the UmuC/DinB nucleotidyl transferase superfamily, has been implicated in spontaneous mutagenesis. Here we show that human pol kappa copies undamaged DNA with average single-base substitution and deletion error rates of 7 x 10(-3) and 2 x 10(-3), respectively. These error rates are high when compared to those of most other DNA polymerases. pol kappa also has unusual error specificity, producing a high proportion of T.CMP mispairs and deleting and adding non-reiterated nucleotides at extraordinary rates. Unlike other members of the UmuC/DinB family, pol kappa can processively synthesize chains of 25 or more nucleotides. This moderate processivity may reflect a contribution of C-terminal residues, which include two zinc clusters. The very low fidelity and moderate processivity of pol kappa is novel in comparison to any previously studied DNA polymerase, and is consistent with a role in spontaneous mutagenesis.  相似文献   

2.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   

3.
K C Sitney  M E Budd  J L Campbell 《Cell》1989,56(4):599-605
Three nuclear DNA polymerases have been described in yeast: DNA polymerases I, II, and III. DNA polymerase I is encoded by the POL1 gene and is essential for DNA replication. Since the S. cerevisiae CDC2 gene has recently been shown to have DNA sequence similarity to the active site regions of other known DNA polymerases, but to nevertheless be different from DNA polymerase I, we examined cdc2 mutants for the presence of DNA polymerases II and III. DNA polymerase II was not affected by the cdc2 mutation. DNA polymerase III activity was significantly reduced in the cdc2-1 cell extracts. We conclude that the CDC2 gene encodes yeast DNA polymerase III and that DNA polymerase III, therefore, represents a second essential DNA polymerase in yeast.  相似文献   

4.
5.
The major DNA polymerase activity of wild-type U. maydis has been extensively purified. It possesses a molecular weight of about 150,000 daltons and appears to require a DNA primer with a 3'-hydroxyl terminus as well as a template. The polymerase activity has also been purified from the pol 1-1 strain, which is temperature sensitive fro growth and DNA synthesis, and which at the restrictive temperature contains only 10-25% levels of the DNA polymerase activity obtained from wild-type strains. It was similar in all properties studied, except that the activity was thermolabile at 40 degrees C compared to that from the wild-type strain. Physiological studies on the mutant showed that it was only slightly sensitive to UV, ionising radiation and nitrosoguanidine at the permissive temperature, and was proficient in genetic recombination. The results suggest that the pol 1-1 gene product does not play an important role in repair and recombination processes within the cell, and that its primary function lies in replication.  相似文献   

6.
7.
Summary The cloned DNA polymerase I gene has been used to map the POL1 locus on the left arm of chromosome XIV, between MET4 and TOP2. Temperature-sensitive mutants in POL1 have been obtained by in vitro mutagenesis of the cloned gene and in vivo replacement of the wild-type allele with the mutated copy. Physiological and biochemical characterization of one temperature-sensitive mutant (pol1-1) shows that cells shifted to the non-permissive temperature can complete one round of cell division and DNA replication before they arrest. Analysis of DNA polymerase I in crude extracts and in partially purified preparations indicates that the pol1-1 mutation results in a conformational change and affects the stability of the DNA primase-polymerase complex.  相似文献   

8.
A cell wall hydrolase of Bacillus subtilis was prepared from Escherichia coli cells harboring a plasmid containing the B. subtilis cwlA gene and purified by hydroxyapatite column chromatography and HPLC through TSK-gel G3000SWXL. In contrast to the molecular mass of 29,919 Da deduced from its nucleotide sequence, the purified CWLA is a 23 kDa protein. Characterization of the specific substrate bond cleaved by CWLA indicated the enzyme is an N-acetylmuramyl-L-alanine amidase. A 32-kDa precursor protein was detected on zymography of a crude cell homogenate. Some of the enzymatic properties of CWLA are also described.  相似文献   

9.
The efficiency and fidelity of nucleotide incorporation by high-fidelity replicative DNA polymerases (Pols) are governed by the geometric constraints imposed upon the nascent base pair by the active site. Consequently, these polymerases can efficiently and accurately replicate through the template bases which are isosteric to natural DNA bases but which lack the ability to engage in Watson-Crick (W-C) hydrogen bonding. DNA synthesis by Poleta, a low-fidelity polymerase able to replicate through DNA lesions, however, is inhibited in the presence of such an analog, suggesting a dependence of this polymerase upon W-C hydrogen bonding. Here we examine whether human Polkappa, which differs from Poleta in having a higher fidelity and which, unlike Poleta, is inhibited at inserting nucleotides opposite DNA lesions, shows less of a dependence upon W-C hydrogen bonding than does Poleta. We find that an isosteric thymidine analog is replicated with low efficiency by Polkappa, whereas a nucleobase analog lacking minor-groove H bonding potential is replicated with high efficiency. These observations suggest that both Poleta and Polkappa rely on W-C hydrogen bonding for localizing the nascent base pair in the active site for the polymerization reaction to occur, thus overcoming these enzymes' low geometric selectivity.  相似文献   

10.
ITP and dITP exist in all cells. dITP is potentially mutagenic, and the levels of these nucleotides are controlled by inosine triphosphate pyrophosphatase (EC ). Here we report the cloning, expression, and characterization of a 21.5-kDa human inosine triphosphate pyrophosphatase (hITPase), an enzyme whose activity has been reported in many animal tissues and studied in populations but whose protein sequence has not been determined before. At the optimal pH of 10.0, recombinant hITPase hydrolyzed ITP, dITP, and xanthosine 5'-triphosphate to their respective monophosphates whereas activity with other nucleoside triphosphates was low. K(m) values for ITP, dITP, and xanthosine 5'-triphosphate were 0.51, 0.31, and 0.57 mm, respectively, and k(cat) values were 580, 360, and 640 s(-1), respectively. A divalent cation was absolutely required for activity. The gene encoding the hITPase cDNA sequence was localized by radiation hybrid mapping to chromosome 20p in the interval D20S113-D20S97, the same interval in which the ITPA inosine triphosphatase gene was previously localized. A BLAST search revealed the existence of many similar sequences in organisms ranging from bacteria to mammals. The function of this ubiquitous protein family is proposed to be the elimination of minor potentially mutagenic or clastogenic purine nucleoside triphosphates from the cell.  相似文献   

11.
12.
A thermophilic DNA polymerase has been purified to near homogeneity from the archaebacterium Thermoplasma acidophilum. Analysis of the purified enzyme by sodium dodecyl sulfate gel electrophoresis revealed a single polypeptide of 88 kDa which co-sediments with the DNA polymerase activity on sucrose gradients. Combination of sedimentation and gel filtration analyses indicates that this DNA polymerase is an 88-kDa monomeric enzyme in its native form. The DNA polymerase is resistant to aphidicolin, slightly sensitive to 2',3'-dideoxyribosylthymine triphosphate and inhibited by N-ethylmaleimide when preincubation with this reagent is performed at 65 degrees C. We find that a 3'----5' exonuclease activity is associated with the purified DNA polymerase; the two activities of the enzyme are optimal at 65 degrees C but the exonuclease activity is active in a broader range of lower temperatures and is more thermostable than the DNA polymerase activity.  相似文献   

13.
Human DNA polymerase kappa (pol kappa) has a sequence significantly homologous with that of Escherichia coli DNA polymerase IV (pol IV). We used a truncated form of human pol kappa (pol kappaDeltaC) and full-length pol IV to explore the miscoding properties of these enzymes. Oligodeoxynucleotides, modified site-specifically with N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF), were used as DNA templates in primer extension reactions that included all four dNTPs. Reactions catalyzed by pol kappaDeltaC were partially blocked one base prior to dG-AAF or dG-AF, and also opposite both lesions. At higher enzyme concentrations, a significant fraction of primer was extended. Analysis of the fully extended reaction product revealed incorporation of dTMP opposite dG-AAF, accompanied by much smaller amounts of dCMP, dAMP, and dGMP and some one- and two-base deletions. The product terminating 3' to the adduct site contained AMP misincorporated opposite dC. On templates containing dG-AF, dAMP, dTMP, and dCMP were incorporated opposite the lesion in approximately equal amounts, together with some one-base and two-base deletions. Steady-state kinetics analysis confirmed the results obtained from primer extension reactions catalyzed by pol kappa. In contract, primer extension reactions catalyzed by pol IV were blocked effectively by dG-AAF and dG-AF. At high concentrations of pol IV, full-length products were formed containing primarily one- or two-base deletions with dCMP, the correct base, incorporated opposite dG-AF. The miscoding properties of pol kappa observed in this study are consistent with mutational spectra observed when plasmid vectors containing dG-AAF or dG-AF are introduced into simian kidney cells [Shibutani, S., et al. (2001) Biochemistry 40, 3717-3722], supporting a model in which pol kappa plays a role in translesion synthesis past acetylaminofluorene-derived lesions in mammalian cells.  相似文献   

14.
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polκ encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polκ is a novel lesion bypass polymerase in vitro. Purified human Polκ efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polκ most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polκ was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polκ effectively bypassed a template (–)-trans-anti-benzo[a]pyrene-N2-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polκ was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polκ plays an important role in both error-free and error-prone lesion bypass in humans.  相似文献   

15.
Z F Wang  J Yang  Z Q Nie  M Wu 《Biochemistry》1991,30(4):1127-1131
A crude in vitro system which initiates chloroplast DNA synthesis near the D-loop site mapped by electron microscopy [Wu, M., Lou, J. K., Chang, D. Y., Chang, C. H., & Nie, Z. Q. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6761-6765] consists of soluble proteins and proteins extracted from purified thylakoid membrane. In this paper, a DNA polymerase activity was purified to near homogeneity from the soluble protein fraction of this in vitro system by sequential chromatographic separations on heparin-agarose, DEAE-cellulose, and single-stranded DNA-agarose columns and sedimentation in a glycerol gradient. In the glycerol gradient, the enzyme activity sedimented at a position corresponding to a 110-kDa protein. Electrophoretic analysis of the highly purified fraction on SDS-polyacrylamide gel revealed a major polypeptide band with an apparent molecular mass of approximately 116 kDa. In situ DNA polymerase activity assay shows that the DNA polymerization function is associated with the 116-kDa band and an 80-kDa band which could be a subunit of the enzyme. Polymerization activity is inhibited by N-ethylmaleimide, ethidium bromide, and dideoxycytosine triphosphate and is relatively resistant to aphidicolin. Poly(dA).(dT)10 and gapped double-stranded DNA are preferred templates. The purified enzyme contains no exonuclease activity and can initiate DNA replication in a supercoiled plasmid DNA template containing the chloroplast DNA replication origin.  相似文献   

16.
Purification and characterization of a DNA polymerase beta from Drosophila*   总被引:7,自引:0,他引:7  
A DNA polymerase with properties similar to mammalian polymerase beta has been isolated to near homogeneity from embryos of Drosophila melanogaster. A combination of exclusion chromatography and sodium dodecyl sulfate-gel electrophoresis indicates that this enzyme is composed of a single polypeptide of molecular weight-110,000. Optimum activity on a nicked template occurs at pH 8.4 in the presence of 15 mM MgCl2 and 250 mM NaCl. Enzyme activity is strongly inhibited by dideoxythymidine triphosphate but is relatively insensitive to aphidicolin and N-ethylmalemide. These properties clearly distinguish this enzyme from polymerase alpha, which has previously been characterized from this tissue. This report represents the first extensive purification of a beta-like polymerase from the Protostomic branch of the animal phylogenetic tree. It furthermore generates the potential for a genetic analysis of the function of polymerase beta in DNA recombination, repair, and synthesis.  相似文献   

17.
18.
In Escherichia coli, the dinB gene is required for the SOS-induced lambda untargeted mutagenesis pathway and confers a mutator phenotype to the cell when the gene product is overexpressed. Here, we report that the purified DinB protein is a DNA polymerase. This novel E. coli DNA polymerase (pol IV) is shown to be strictly distributive, devoid of proofreading activity, and prone to elongate bulged (misaligned) primer/template structures. Site-directed mutagenesis experiments of dinB also demonstrate that the polymerase activity of DinB is required for its in vivo mutagenicity. Along with the sequence homologies previously found within the UmuC-like protein family, these results indicate that the uncovered DNA polymerase activity may be a common feature of all these homologous proteins.  相似文献   

19.
Infection of WI-38 human fibroblasts with varicella-zoster virus led to the stimulation of host cell DNA polymerase synthesis and induction of a new virus-specific DNA polymerase. This virus-induced DNA polymerase was partially purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. This virus-induced enzyme could be distinguished from host cell enzyme by its chromatographic behavior, template specificity, and its requirement of salt for maximal activity. The enzyme could efficiently use poly(dC).oligo(dG)12-18 as well as poly(dA).oligo(dT)12-18 as template-primers. It required Mg2+ for maximal polymerization activity and was sensitive to phosphonoacetic acid, to which host alpha- and beta-DNA polymerase were relatively resistant. In addition, this induced DNA polymerase activity was enhanced by adding 60 mM (NH4)2SO4 to the reaction mixture.  相似文献   

20.
The IAH1 gene of Saccharomyces cerevisiae encodes an esterase that preferentially acts on isoamyl acetate; however, the enzyme has not yet been completely purified from the yeast S. cerevisiae. We constructed the IAH1 gene expression system in Escherichia coli, and purified the IAH1 gene product (Iah1p). The amount of Iah1p produced by recombinant E. coli was more than 40% of total cellular proteins. The molecular size of Iah1p was 28 kDa by SDS-polyacrylamide gel electrophoresis. Judging from the molecular weight estimation by gel filtration of purified Iah1p, the enzyme was thought to be a homodimer. The K m values for isoamyl acetate and isobutyl acetate were 40.3 mM and 15.3 mM, respectively. The enzyme activity was inhibited by Hg2+, p-chloromercuribenzoate, and diisopropylfluorophosphate. Received: 23 May 1999 / Received revision: 27 October 1999 / Accepted: 5 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号