首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of [1-14C]6(Z),9(Z),12(Z)-octadecatrienoic acid with an enzyme preparation from the red alga Lithothamnion corallioides Crouan led to the formation of two new compounds, i.e. the conjugated tetraene 6(Z),8(E),10(E),12(Z)-octadecatetraenoic acid and the bis-allylic hydroxy acid 11(R)-hydroxy-6(Z),9(Z),12(Z)-octadecatrienoic acid. These two compounds were formed by independent pathways and were not interconvertible by the enzyme preparation. Experiments with stereospecifically deuteriated 6,9,12-octadecatrienoic acids demonstrated that formation of 6,8,10,12-octadecatetraenoic acid was accompanied by loss of the pro-S and pro-R hydrogens from C-8 and C-11, respectively, whereas formation of 11-hydroxy-6,9,12-octadecatrienoic acid proceeded with loss of the pro-S hydrogen from C-11. Biosynthesis of 6,8,10,12-octadecatetraenoic acid was dioxygen-dependent and was accompanied by production of hydrogen peroxide. A number of artificial electron acceptors supported formation of 6,8,10,12-octadecatetraenoic acid under anaerobic conditions. The existence in Lithothamnion corallioides of a fatty acid oxidase that catalyzes the oxidation of certain poly-unsaturated fatty acids into conjugated tetraene fatty acids is postulated.  相似文献   

2.
The initial and rate-limiting step in prostaglandin biosynthesis is stereoselective removal of the pro-S hydrogen from the 13-carbon of arachidonic acid. This is followed by oxygenation at C-11, formation of the five-membered ring, and a second oxygenation at C-15 to yield the endoperoxide product, prostaglandin G(2). Aspirin treatment of cyclooxygenase-2 is known to acetylate an active site serine, block prostaglandin biosynthesis, and give 15R-hydroxyeicosatetraenoic acid (15R-HETE) as the only product. 15R-HETE and prostaglandins have opposite stereoconfigurations of the 15-hydroxyl. To understand the changes that lead to 15R-HETE synthesis in aspirin-treated COX-2, we employed pro-R- and pro-S-labeled [13-(3)H]arachidonic acids to investigate the selectivity of the initial hydrogen abstraction. Remarkably, aspirin-treated COX-2 formed 15R-HETE with removal of the pro-S hydrogen at C-13 (3-9% retention of pro-S tritium label), the same stereoselectivity as in the formation of prostaglandins by native cyclooxygenase. To account for this result and the change in oxygenase specificity, we suggest that the bulky serine acetyl group forces a realignment of the omega end of the arachidonic acid carbon chain. This can rationalize abstraction of the C-13 pro-S hydrogen, the blocking of prostaglandin synthesis, and the formation of 15R-HETE as the sole enzymatic product.  相似文献   

3.
A method for the degradation of radioactive nicotinic acid   总被引:2,自引:2,他引:0       下载免费PDF全文
A chemical degradation scheme is reported, which permits the measurement of the radioactivity of each carbon atom of nicotinic acid. Nicotinic acid is decarboxylated by heating with copper chromite to give carbon dioxide (C-7) and pyridine. The pyridine is converted into 4-nitropyridine 1-oxide, which is heated with aqueous calcium hypobromite to give tribromonitromethane. Combustion of the latter gives carbon dioxide derived from C-4 of the nicotinic acid. Nicotinic acid is also reduced to nipecotic acid, which is oxidized to succinic acid by acidic potassium permanganate. Stepwise degradation of the succinic acid by standard procedures gives two samples of carbon dioxide, which correspond to C-3, C-6 and C-4, C-5 of the nicotinic acid. Benzoylation of the nipecotic acid, followed by oxidation with permanganate at pH7, gives 5-amino-4-carboxyvaleric acid; this is converted into 2-methyleneglutaric acid by the action of nitrous acid. Hydrogenation of the 2-methyleneglutaric acid over rhodium in methanol gives 2-methylglutaric acid, which is oxidized with dilute chromic acid to acetic acid. Stepwise degradation of the acetic acid by standard procedures gives two samples of carbon dioxide, which correspond to C-2 and C-3 of the nicotinic acid. Thus the radioactivities of C-2, C-3, C-4 and C-7 are determined directly and those of C-5 and C-6 by difference. The method was shown to be isotopically valid for [2,3,7-14C]-, [4,6-14C2]- and [5-14C]-nicotinic acid.  相似文献   

4.
Several cyclic and alicyclic C11 hydrocarbons have been shown to act as gamete releasing and/or attracting pheromones during sexual reproduction of brown algae (Phaeophyceae). The same compounds are also found in the essential oils of various plants, of which the occurrence of the cycloheptadiene-pheromone ectocarpene in Senecio isatideus (Compositae) is noteworthy. Administration of [3H]dodeca-3,6,9-trienoic acid to cuttings of this plant leads to incorporation of radioactivity into ectocarpene. Double-bond-deuterated nona-3,6-dienoic acid is converted to fucoserratene, the pheromone of several Fucales, which is certainly not present among the hydrocarbons of Senecio. This proves that the pool of medium-chain, multiply unsaturated fatty acids includes precursors of all types of highly unsaturated hydrocarbons. Appropriately labelled (deuterium markers) fatty acid homologues were synthesized and applied to Senecio plantlets to unravel the mechanistic aspects. The results strongly suggest radical initiation of the pheromone biosynthesis by abstraction of a single hydrogen from a 1,4-pentadienyl segment of the fatty acid followed by oxidation to the corresponding cation. This causes fragmentation of the reactive intermediate into an olefine and carbon dioxide by neighbouring-group participation of the flanking double bonds. A tentative biosynthetic scheme is deduced from the experimental results which also sets the stereochemistry of the algal pheromones into a uniform mechanistic concept.  相似文献   

5.
[1-(13)C], [2-(13)C] and [6-(13)C] D-glucose were, respectively, ozonized in a semi-batch reactor in acidic and basic conditions. The composition of the gas phase was evaluated by on-line mass spectrometry measurements. The quantitative and isotopic analyses of the carbon dioxide formed during ozonization are presented and discussed. The data, correlated with previous literature results, clearly show that at pH 2.5 the production of carbon dioxide from C-6 and C-1 carbon atoms is nearly equivalent. Conversely, at higher pH values, CO(2) is released with a greater selectivity from the reducing end. The importance of the decarboxylation reaction in the formation of by-products with fewer than six carbon atoms is also demonstrated.  相似文献   

6.
Alkyldihydroxyacetone-P (alkyl-DHAP) synthase catalyzes the exchange of the fatty acid esterified to C-1 of the DHAP portion of acyl-DHAP for a fatty alcohol to form 1-O-alkyl-DHAP, the first ether-linked intermediate in ether lipid biosynthesis. Another characteristic of the reaction is the exchange of the pro-R hydrogen at C-1. We have investigated this hydrogen exchange using palmitoyl-[1-R-3H]DHAP and a 1000-fold purified preparation of alkyl-DHAP synthase. We found a small but significant pro-R hydrogen exchange in the absence of the co-substrate, fatty alcohol. When [14C]hexadecanol was added, the increase in pro-R 3H exchange was equal to the [14C]hexadecyl-DHAP formed. Addition of [14C]palmitic acid resulted in an increase in pro-R 3H exchange that matched the formation of [14C]palmitoyl-DHAP by the acyl exchange activity of alkyl-DHAP synthase. Furthermore, although whole microsomes contain at least two acyl hydrolases for acyl-DHAP, purified preparations of alkyl-DHAP synthase do not form DHAP from acyl-DHAP. These results are discussed with respect to data obtained from other laboratories using whole microsomes and in support of our proposed ping-pong mechanism for alkyl-DHAP synthase.  相似文献   

7.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

8.
Odd numbered 1-alkenes, such as 1-pentadecene or 1,8,11,14-heptadecatetraene are formed from palmitic or linolenic acid by fragmentative decarboxylation. Incubation studies with germinating safflower (Carthamus tinctorius) and (2R,3R)-12-phenyl[2,3-2H2]dodecanoic acid, (2S,3S)-12-phenyl[2,3-2H2]dodecanoic acid, (2R)-12-phenyl[2-2H]dodecanoic acid and (2S)-12-phenyl[2-2H]dodecanoic acid instead of the natural alpha-linolenic acid precursor revealed the fragmentation to be an overall anti elimination of the 3-pro(S) hydrogen and the carboxyl group (anti-periplanar transition state geometry). Externally offered 3-hydroxy acids are not fragmented to 1-alkenes. The most probable mechanistic alternatives are in agreement with abstraction of the 3-pro(S) hydrogen as a radical followed by electron transfer and fragmentation, or transient insertion of oxygen into the 3-pro(S) C-H bond and subsequent fragmentation into an 1-alkene and CO2 after appropriate activation. The mechanism seems to be of general importance for the biosynthesis of vinylic substructures of natural products from oxygenated precursors.  相似文献   

9.
Contributions of omega-oxidation to overall fatty acid oxidation in slices from livers of ketotic alloxan diabetic rats and of fasted monkeys are estimated. Estimates are made from a comparison of the distribution of 14C in glucose formed by the slices from omega-14C-labeled compared to 2-14C-labeled fatty acids of even numbers of carbon atoms and from [1-14C]acetate compared to [2-14C]acetate. These estimates are based on the fact that 1) the dicarboxylic acid formed via omega-oxidation of a omega-14C-labeled fatty acid will yield [1-14C]acetate and [1-14C]succinate on subsequent beta-oxidation, if beta-oxidation is assumed to proceed to completion; 2) only [2-14C]acetate will be formed if the fatty acid is metabolized solely via beta-oxidation; and 3) 14C from [1-14C]acetate and [1-14C]succinate is incorporated into carbons 3 and 4 of glucose and 14C from [2-14C]acetate is incorporated into all six carbons of glucose. From the distributions found, the contribution of omega-oxidation to the initial oxidation of palmitate by liver slices is estimated to between 8% and 11%, and the oxidation of laurate between 17% and 21%. Distributions of 14C in glucose formed from 14C-labeled palmitate infused into fasted and diabetic rats do not permit quantitative estimation of the contribution of omega-oxidation to fatty acid oxidation in vivo. However, the distributions found also indicate that, of the fatty acid metabolized by the whole animal in the environment of glucose formation, at most, only a minor portion is initially oxidized via omega-oxidation. As such, omega-oxidation cannot contribute more than a small extent to the formation of glucose.  相似文献   

10.
Stereospecifically (3)H-labeled substrates are useful tools in studying the mechanism of hydrogen abstractions involved in the oxygenation of polyunsaturated fatty acids. Here, we describe modified methods for the synthesis of arachidonic acids labeled with a single chiral tritium on the methylene groups at carbons 10 or 13. The appropriate starting material is a ketooctadecanoic acid which is prepared from an unsaturated C18 fatty acid precursor or by total synthesis. The (3)H label is introduced by NaB(3)H(4) reduction and the resulting tritiated hydroxy fatty acid then is tosylated, separated into the enantiomers by chiral phase HPLC, and subsequently transformed into stearic acids. A variety of stereospecifically labeled unsaturated fatty acids are obtained using literature methods of microbial transformation with the fungus Saprolegnia parasitica. Two applications are described: (i) In incubations of [10S-(3)H]- and [10R-(3)H]arachidonic acids in human psoriatic scales we show that a 12R-lipoxygenase accounts not only for synthesis of the major product 12R-HETE, but it contributes also, through subsequent isomerization, to the minor amounts of 12S-HETE. (ii) The [10R-(3)H]- and [10S-(3)H]arachidonic acids were also used to demonstrate that prostaglandin ring formation by cyclooxygenases does not involve carbocation formation at C-10 of arachidonic acid as was hypothesized recently.  相似文献   

11.
Prostaglandin H synthase-1 of ram vesicular glands metabolises 5,8,11-eicosatrienoic (Mead) acid to 13R-hydroxy-5,8,11-eicosatrienoic and to 11R-hydroxy-5,8,12-eicosatrienoic in a 5:1 ration. We wanted to determine the metabolism of this fatty acid by prostaglandin H synthase-2. Western blot showed that microsomes of sheep and rabbit placental cotyledons contained prostaglandin H synthase-2, while prostaglandin H synthase-1 could not be detected. Microsomes of sheep cotyledons metabolised [1-14C]5,8,11-eicosatrienoic acid to many polar metabolites and diclofenac (0.05 mM) inhibited the biosynthesis. The two major metabolites were identified as 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids. They were formed in a ratio of 3:2, which was not changed by aspirin (2 mM). 5,8,11-Eicosatrienoic acid is likely oxygenated by removal of the pro-S hydrogen at C-13 and insertion of molecular oxygen at either C-13 or C-11, which is followed by reduction of the peroxy derivatives to 13-hydroxy-5,8,11-eicosatrienoic and 11-hydroxy-5,8,12-eicosatrienoic acids, respectively. Prostaglandin H synthase-1 and -2 oxygenate 5,8,11-eicosatrienoic acid only slowly compared with arachidonic acid.  相似文献   

12.
The principal supply of carbon precursors for fatty acid synthesis in leaf tissue has been a much debated topic, with some experiments suggesting a direct supply from the C3 products of photosynthetic carbon fixation and colleagues suggesting the utilization of free acetate (for which concentrations in leaves in the range of 0.05-1.4 mM have been reported). To address this issue we first reassessed the in vivo rate of fatty acid synthesis using a new method, that of [13C]carbon dioxide labeling of intact Arabidopsis plants with the subsequent analysis of fatty acids by gas chromatography-mass spectrometry (GC-MS). This method gave an average value of 2.3 mmoles carbon atoms h-1 mg chlorophyll-1 for photosynthetic tissues. The method was extended by isotopic dilution analysis to measure the rate of fatty acid synthesis in the dark. There was negligible fatty acid synthesis (< 5% of the rate in the light) in the dark. In addition, the method allowed an estimate of the absolute rate of fatty acid degradation of about 4% of the total fatty acid content per day. With the in vivo rate of fatty acid synthesis in the light defined, if the bulk tissue acetate concentration available for fatty acid synthesis is 1 mM, this acetate pool can sustain fatty acid synthesis for approximately 60 min. When the leaves of Arabidopsis, barley and pea were given a 5 min pulse of [14C]carbon dioxide, the label rapidly appeared in fatty acids with a lag phase of less than 2-3 min. Continuous labeling with [14C]carbon dioxide, for up to 1 h, showed a similar result. Furthermore, 14C-label in free acetate was less than 5% of that in fatty acids. In conclusion, these data suggest that either the bulk pool of acetate is not involved in fatty acid synthesis or the concentration of acetate must be less than 0.05 mM under strong illumination.  相似文献   

13.
Human skin fibroblasts in suspension are able to degrade [1-14C]-labeled alpha- and gamma-methyl branched chain fatty acids such as pristanic and homophytanic acid. Pristanic acid was converted to propionyl-CoA, whereas homophytanic acid was beta-oxidized to acetyl-CoA. Incubation of skin fibroblasts with [1-14C]-labeled fatty acids for longer periods produced radiolabeled carbon dioxide, presumably by further degradation of acetyl-CoA or propionyl-CoA generated by beta-oxidation. Under the same conditions similar products were produced from very long chain fatty acids, such as lignoceric acid. Inclusion of digitonin (> 10 micrograms/ml) in the incubations strongly inhibited carbon dioxide production but stimulated acetyl-CoA or propionyl-CoA production from fatty acids. ATP, Mg2+, coenzyme A, NAD+ and L-carnitine stimulated acetyl-CoA or propionyl-CoA production from [1-14C]-labeled fatty acids in skin fibroblast suspensions. Branched chain fatty acid beta-oxidation was reduced in peroxisome-deficient cells (Zellweger syndrome and infantile Refsum's disease) but they were beta-oxidized normally in cells from patients with X-linked adrenoleukodystrophy (ALD). Under the same conditions, lignoceric acid beta-oxidation was impaired in the above three peroxisomal disease states. These results provide evidence that branched chain fatty acid, as well as very long chain fatty acid, beta-oxidation occurs only in peroxisomes. As the defect in X-linked ALD is in a peroxisomal fatty acyl-CoA synthetase, which is believed to be specific for very long chain fatty acids, we postulate that different synthetases are involved in the activation of branched chain and very long chain fatty acids in peroxisomes.  相似文献   

14.
The metabolism of [1,2-13C2]acetate in rat brain was studied by in vivo and in vitro 13C NMR spectroscopy, in particular by taking advantage of the homonuclear 13C-13C spin coupling patterns. Well nourished rats were infused with [1,2-13C2]acetate or [1-13C]acetate in the jugular vein, and the in situ kinetics of 13C labeling during the infusion period was followed by 13C NMR techniques. The in vivo 13C NMR spectra showed signals from (i) the C-1 carbon of [1,2-13C2] acetate or [1-13C]acetate, (ii) 13CO3H-, and (iii) the natural abundance 13C carbons of sufficiently mobile fatty acids. Methanol/HCl/perchloric acid extracts of the brains were prepared and were further analyzed by high resolution 13C NMR. The homonuclear 13C-13C spin coupling patterns after infusion of [1,2-13C2]acetate showed very different isotopomer populations in glutamate, glutamine, and gamma-aminobutyric acid. Analyzing the relative proportions of these isotopomers revealed (i) two different glutamate compartments in the rat brain characterized by the presence and absence, respectively, of glutamine synthase activity, (ii) two different tricarboxylic acid cycles, one preferentially metabolizing [(1,2-13C2]acetate, the other mainly using unlabeled acetyl-coenzyme A, (iii) a hitherto unknown cerebral pyruvate recycling system associated with the tricarboxylic acid cycle, metabolizing primarily unlabeled acetyl-coenzyme A, and (iv) a predominant production of gamma-aminobutyric acid in the glutamate compartment lacking glutamine synthase.  相似文献   

15.
Intact cells of the alga Amphidinium carterae (Dinophyceae), and a cell-free system prepared from it, incorporated 14C, 3H-labelled mevalonate into lycopene, beta, beta-carotene, zeaxanthin, neoxanthin, diadinoxanthin and peridinin. The 14C/3H ratios of zeaxanthin, neoxanthin and diadinoxanthin formed from (2RS,3R)-[2-14C,2-3H2]mevalonate show that a hydrogen atom from C-2 of mevalonate is retained in the allene at C-8, and also at C-12 of peridinin. (3R,4R + 3S,4S)-[2-14C,4-3H1]Mevalonate gave 14C/3H ratios in peridinin which show that C-14 is lost. The three carbon atoms excised during the formation of the C37 carotenoid peridinin are C-13, C-14 and C-20 of neoxanthin.  相似文献   

16.
A previously unspecified "starter" unit in the predicted biosynthesis pathway of 5-alkylresorcinols has now identified as a fatty acid or its equivalent, using an efficient 5-alkylresorcinol production system of etiolated rice seedlings. Feeding saturated, odd-carbon fatty acid ester substrates from C11 to C19 specifically and markedly increased the amount of the corresponding 5-alkylresorcinol homologs with even-carbon chains that are shorter by one carbon than those of the supplied fatty acids. The amount of these homologs depended on substrate concentration. Some of the homologs whose amounts increased had linear carbon chains and the dodecyl homolog was shown to be 5-n-dodecylresorcinol. Moreover, the 13C label in the dodecyl homolog that was biosynthesized from the [1-13C]tridecanoate substrate was localized on the C-5 carbon of the resorcinol ring. These results obviously show that the fatty acid unit acts as a direct precursor and forms the side-chain moiety of 5-n-alkylresorcinol via the predicted biosynthesis pathway.  相似文献   

17.
The formation of poly(3-hydroxyalkanoates) (PHAs) in Pseudomonas putida KT2442 from various carbon sources was studied by 13C nuclear magnetic resonance spectroscopy, gas chromatography, and gas chromatography-mass spectroscopy. By using [1-13C]decanoate, the relation between beta-oxidation and PHA formation was confirmed. The labeling pattern in PHAs synthesized from [1-13C]acetate corresponded to the formation of PHAs via de novo fatty acid biosynthesis. Studies with specific inhibitors of the fatty acid metabolic pathways demonstrated that beta-oxidation and de novo fatty acid biosynthesis function independently in PHA formation. Analysis of PHAs derived from [1-13C]hexanoate showed that both fatty acid metabolic routes can function simultaneously in the synthesis of PHA. Furthermore, evidence is presented that during growth on medium-chain-length fatty acids, PHA precursors can be generated by elongation of these fatty acids with an acetyl coenzyme A molecule, presumably by a reverse action of 3-ketothiolase.  相似文献   

18.
Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.  相似文献   

19.
5-Aminolaevulinate containing tritium at C-3 and C-5 was converted into haem using a preparation of anaemic chicken blood. The biosynthetic haem was degraded to ethylmethyl maleimide and haematinic acid which had relative tritium radioactivity of 0.58 and 1.0 respectively. These results indicated that in the formation of the vinyl group of haem only one of the hydrogen atoms from the beta-positions of two propionate side chains of coproporphyrinogne III was removed. Haem was also biosynthesised from [(3R)-3H1]2-oxoglutarate. The determination of relative radioactivity in ethylmethyl maleimide and haematinic acid endorsed the above conclusion and further indicated that the pro-R hydrogen atoms located at the beta-positions of the propionate side chains are retained in haem biosynthesis. In order to explore the status of hydrogen atoms located at the alpha-positions of propionate side chains haem was biosynthesised using [2RS)-3H2]succinate, [(2R)-3H1]succinate and [(2S)-3H1]succinate. Degradation of the three samples of haem into ethylmethyl maleimide and haematinic acid showed that both the vinyl groups of haem are formed through the loss of pro-S hydrogen atoms located at the beta-positions of the propionic acid side chains of coproporphyrinogen III. The results further showed that the hydrogen atoms located at the alpha-positions of the side chains are not involved in the biosynthesis of haem. Various mechanisms for the formation of vinyl groups in the biosynthesis are discussed.  相似文献   

20.
Pregnenolone and dehydroepiandrosterone accumulate in brain as sulfate and fatty acid esters and unconjugated steroids. The steroid fatty acid ester-synthesizing activity was investigated in rat brain microsomes. Endogenous fatty acids in the microsomal fraction were used for the esterification of steroids. The enzyme system had a pH optimum of 4.5 in acetate buffer with [3H]dehydroepiandrosterone as substrate. The apparent Km was 9.2 +/- 3.1 x 10(-5) M and Vmax was 18.6 +/- 3.4 nmol/h/mg protein (mean +/- SEM). The inhibition constants of pregnenolone and testosterone were 123 and 64 microM, respectively. Results were compatible with a competitive type of inhibition. A high level of synthetic activity was found in the brain of 1- to 3-week-old male rats, which rapidly decreased with aging. Saponification of purified [3H]pregnenolone esters yielded pregnenolone and a mixture of palmitate, oleate, linoleate, stearate, and myristate as the predominant fatty acids. Contrasting with the high rates of esterification of several radioactive delta 5-3 beta-hydroxysteroids or 17 beta-hydroxysteroids, no fatty acid esters of either cholesterol, epitestosterone (with a hydroxyl group at position C-17 alpha), or corticosterone (with hydroxyl groups at C-21 and C-11 beta) were formed in the same incubation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号