首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
Drosophila GCM (glial cell missing) is a novel DNA-binding protein that determines the fate of glial precursors from the neural default to glia. The GCM protein contains the functional domain that is essential for recognition of the upstream sequence of the repo gene. In the DNA-binding region of this GCM protein, there is a cysteine-rich region with which divalent metal ions such as Zn(2+) must bind and other proteins belonging to the GCM family have a corresponding region. To obtain a more detailed insight into the structural and functional features of this DNA-binding region, we have determined the minimal DNA-binding domain and obtained inductively coupled plasma atomic emission spectra and (1)H-(15)N, (1)H-(15)N-(13)C and (113)Cd(2+) NMR spectra, with or without its specific DNA molecule. Considering the results, it was concluded that the minimal DNA-binding domain includes two Zn(2+)-binding sites, one of which is adjacent to the interface for DNA binding. Systematic mutational analyses of the conserved cysteine residues in the minimal DNA-binding domain revealed that one Zn(2+)-binding site is indispensable for stabilization of the higher order structure of this DNA-binding domain, but that the other is not.  相似文献   

2.
3.
4.
5.
In previous studies, we have developed a technology for the rapid construction of novel DNA-binding proteins with the potential to recognize any unique site in a given genome. This technology relies on the modular assembly of modified zinc finger DNA-binding domains, each of which recognizes a three bp subsite of DNA. A complete set of 64 domains would provide comprehensive recognition of any desired DNA sequence, and new proteins could be assembled by any laboratory in a matter of hours. However, a critical parameter for this approach is the extent to which each domain functions as an independent, modular unit, without influence or dependence on its neighboring domains. We therefore examined the detailed binding behavior of several modularly assembled polydactyl zinc finger proteins. We first demonstrated that 80 modularly assembled 3-finger proteins can recognize their DNA target with very high specificity using a multitarget ELISA-based specificity assay. A more detailed analysis of DNA binding specificity for eight 3-finger proteins and two 6-finger proteins was performed using a target site selection assay. Results showed that the specificity of these proteins was as good or better than that of zinc finger proteins constructed using methods that allow for interdependency. In some cases, near perfect specificity was achieved. Complications due to target site overlap were found to be restricted to only one particular amino acid interaction (involving an aspartate in position 2 of the alpha-helix) that occurs in a minority of cases. As this is the first report of target site selection for designed, well characterized 6-finger proteins, unique insights are discussed concerning the relationship of protein length and specificity. These results have important implications for the design of proteins that can recognize extended DNA sequences, as well as provide insights into the general rules of recognition for naturally occurring zinc finger proteins.  相似文献   

6.
THAP1, the founding member of a previously uncharacterized large family of cellular proteins (THAP proteins), is a sequence-specific DNA-binding factor that has recently been shown to regulate cell proliferation through modulation of pRb/E2F cell cycle target genes. THAP1 shares its DNA-binding THAP zinc finger domain with Drosophila P element transposase, zebrafish E2F6, and several nematode proteins interacting genetically with the retinoblastoma protein pRb. In this study, we report the three-dimensional structure and structure-function relationships of the THAP zinc finger of human THAP1. Deletion mutagenesis and multidimensional NMR spectroscopy revealed that the THAP domain of THAP1 is an atypical zinc finger of approximately 80 residues, distinguished by the presence between the C2CH zinc coordinating residues of a short antiparallel beta-sheet interspersed by a long loop-helix-loop insertion. Alanine scanning mutagenesis of this loop-helix-loop motif resulted in the identification of a number of critical residues for DNA recognition. NMR chemical shift perturbation analysis was used to further characterize the residues involved in DNA binding. The combination of the mutagenesis and NMR data allowed the mapping of the DNA binding interface of the THAP zinc finger to a highly positively charged area harboring multiple lysine and arginine residues. Together, these data represent the first structure-function analysis of a functional THAP domain, with demonstrated sequence-specific DNA binding activity. They also provide a structural framework for understanding DNA recognition by this atypical zinc finger, which defines a novel family of cellular factors linked to cell proliferation and pRb/E2F cell cycle pathways in humans, fish, and nematodes.  相似文献   

7.
New relationships found in the process of updating the structural classification of proteins (SCOP) database resulted in the revision of the structure of the N-terminal, DNA-binding domain of the transition state regulator AbrB. The dimeric AbrB domain shares a common fold with the addiction antidote MazE and the subunit of uncharacterized protein MraZ implicated in cell division and cell envelope formation. It has a detectable sequence similarity to both MazE and MraZ thus providing an evolutionary link between the two proteins. The putative DNA-binding site of AbrB is found on the same face as the DNA-binding site of MazE and appears similar, both in structure and sequence, to the exposed conserved region of MraZ. This strongly suggests that MraZ also binds DNA and allows for a consensus model of DNA recognition by the members of this novel protein superfamily.  相似文献   

8.
9.
The R3H domain is a conserved sequence motif, identified in over 100 proteins, that is thought to be involved in polynucleotide-binding, including DNA, RNA and single-stranded DNA. In this work the 3D structure of the R3H domain from human Smubp-2 was determined by NMR spectroscopy. It is the first 3D structure determination of an R3H domain. The fold presents a small motif, consisting of a three-stranded antiparallel beta-sheet and two alpha-helices, which is related to the structures of the YhhP protein and the C-terminal domain of the translational initiation factor IF3. The similarities are non-trivial, as the amino acid identities are below 10%. Three conserved basic residues cluster on the same face of the R3H domain and could play a role in nucleic acid recognition. An extended hydrophobic area at a different site of the molecular surface could act as a protein-binding site. A strong correlation between conservation of hydrophobic amino acids and side-chain solvent protection indicates that the structure of the Smubp-2 R3H domain is representative of R3H domains in general.  相似文献   

10.
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.  相似文献   

11.
Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αβ fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.  相似文献   

12.
BACKGROUND: Restriction endonucleases form a diverse family of proteins with substantial variation in sequence, structure, and interaction with recognition site DNA. BsoBI is a thermophilic restriction endonuclease that exhibits both base-specific and degenerate recognition within the sequence CPyCGPuG. RESULTS: The structure of BsoBI complexed to cognate DNA has been determined to 1.7 A resolution, revealing several unprecedented features. Each BsoBI monomer is formed by inserting a helical domain into an expanded EcoRI-type catalytic domain. DNA is completely encircled by a BsoBI dimer. Recognition sequence DNA lies within a 20 A long tunnel of protein that excludes bulk solvent. Interactions with the specific bases are made in both grooves through direct and water-mediated hydrogen bonding. Interaction with the degenerate position is mediated by a purine-specific hydrogen bond to N7, ensuring specificity, and water-mediated H bonding to the purine N6/O6 and pyrimidine N4/O4, allowing degeneracy. In addition to the conserved active site residues of the DX(n)(E/D)ZK restriction enzyme motif, His253 is positioned to act as a general base. CONCLUSIONS: A catalytic mechanism employing His253 and two metal ions is proposed. If confirmed, this would be the first example of histidine-mediated catalysis in a restriction endonuclease. The structure also provides two novel examples of the role of water in protein-DNA interaction. Degenerate recognition may be mediated by employing water as a hydrogen bond donor or acceptor. The structure of DNA in the tunnel may also be influenced by the absence of bulk solvent.  相似文献   

13.
The 3D solution structure of the GCC-box binding domain of a protein from Arabidopsis thaliana in complex with its target DNA fragment has been determined by heteronuclear multidimensional NMR in combination with simulated annealing and restrained molecular dynamic calculation. The domain consists of a three-stranded anti-parallel beta-sheet and an alpha-helix packed approximately parallel to the beta-sheet. Arginine and tryptophan residues in the beta-sheet are identified to contact eight of the nine consecutive base pairs in the major groove, and at the same time bind to the sugar phosphate backbones. The target DNA bends slightly at the central CG step, thereby allowing the DNA to follow the curvature of the beta-sheet.  相似文献   

14.
15.
16.
The integrase protein catalyzes the excision and integration of the Tn916 conjugative transposon, a promiscuous genetic element that spreads antibiotic resistance in pathogenic bacteria. The solution structure of the N-terminal domain of the Tn916 integrase protein bound to its DNA-binding site within the transposon arm has been determined. The structure reveals an interesting mode of DNA recognition, in which the face of a three-stranded antiparallel beta-sheet is positioned within the major groove. A comparison to the structure of the homing endonuclease I-Ppol-DNA complex suggests that the three-stranded sheet may represent a new DNA-binding motif whose residue composition and position within the major groove are varied to alter specificity. The structure also provides insights into the mechanism of conjugative transposition. The DNA in the complex is bent approximately 35 degrees and may, together with potential interactions between bound integrase proteins at directly repeated sites, significantly bend the arms of the transposon.  相似文献   

17.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

18.
NaeI, a novel DNA endonuclease, shows topoisomerase and recombinase activities when a Lys residue is substituted for Leu 43. The NaeI-DNA structure demonstrates that each of the two domains of NaeI recognizes one molecule of DNA duplex. DNA recognition induces dramatic rearrangements: narrowing the binding site of the Topo domain 16 A to grip DNA, widening that of the Endo domain 8 A to encircle and bend DNA 45 degrees for cleavage, and completely rebuilding the homodimer interface. The NaeI-DNA structure presents the first example of novel recognition of two copies of one DNA sequence by two different amino acid sequences and two different structural motifs in one polypeptide.  相似文献   

19.
M Hyv?nen  M Saraste 《The EMBO journal》1997,16(12):3396-3404
Bruton''s tyrosine kinase (Btk) is an enzyme which is involved in maturation of B cells. It is a target for mutations causing X-linked agammaglobulinaemia (XLA) in man. We have determined the structure of the N-terminal part of Btk by X-ray crystallography at 1.6 A resolution. This part of the kinase contains a pleckstrin homology (PH) domain and a Btk motif. The structure of the PH domain is similar to those published previously: a seven-stranded bent beta-sheet with a C-terminal alpha-helix. Individual point mutations within the Btk PH domain which cause XLA can be classified as either structural or functional in the light of the three-dimensional structure and biochemical data. All functional mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. It is likely that these mutations inactivate the Btk pathway in cell signalling by reducing its affinity for inositol phosphates, which causes a failure in translocation of the kinase to the cell membrane. A small number of signalling proteins contain a Btk motif that always follows a PH domain in the sequence. This small module has a novel fold which is held together by a zinc ion bound by three conserved cysteines and a histidine. The Btk motif packs against the second half of the beta-sheet of the PH domain, forming a close contact with it. Our structure opens up new ways to study the role of the PH domain and Btk motif in the cellular function of Btk and the molecular basis of its dysfunction in XLA patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号