首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main subject of this study was the swimming behaviour of upriver migrating sea lamprey, Petromyzon marinus , with particular focus on identification of their swim strategies to overcome areas of difficult passage. A biotelemetry technique (electromyogram telemetry) was used to register muscle activity of the tagged animals. In the 2005 spawning season, five adult sea lampreys were surgically tagged and released in the field. Before release, electromyogram (EMG) records were calibrated with the P. marinus swimming speed in a swim tunnel. Differences between ground speed and swimming speed in the wild suggest that the calibrated CEMG (coded electromyogram) transmitter output corresponds to an activity index, and cannot be properly related to actual swimming speed. This study notes the need to confirm the laboratory calibration curves, to ascertain their use in determining swimming speed of tagged fish in the wild. In 2006, in order to confirm the field results seven adult sea lampreys were tagged, calibrated in the laboratory and released in a 30-m long experimental outdoor canal. The results were similar: observed swimming speed was generally higher when compared with the swimming speed obtained with the EMG signal. In the river, when swimming through slow-flow stretches, sea lampreys maintained a constant pattern of activity, attaining an average ground speed of 0.76 BL s−1 (2.5 km h−1). When sea lampreys encountered rapid flow reaches they alternated between short movements ( c. 67 s) and periods of rest ( c. 99 s). In each swim bout they progressed approximately 14 m; to overcome more difficult obstacles sea lampreys increased their number of burst movements instead of longer or more violent swimming events. About 43% of the time negotiating difficult passage areas was spent in resting by attaching motionless to the substrate with their oral disk.  相似文献   

2.
A protocol for staining fish spermatozoa using Hemacolor-stain was developed for light microscopy and successfully applied to Atlantic cod ( Gadus morhua ). Sperm head morphology was characterized by size (length, width, area and perimeter) and shape (ellipticity, rugosity, elongation and regularity) (n   =   6500 spermatozoa), and tail length (n   =   260 spermatozoa) of 12 individual cod. Two spermatozoa heads sperm were clearly identified: round and elongated, being this last one more abundant (86.3%). No evidence was detected in tail length for both head types. Tails were 96.4% length of sperm and no difference in tail length was detected between head types. A positive correlation existed between head and tail length, with variability existing among males. Sperm swimming speeds varied among males with a maximum curvilinear velocity between 151.5 and 201.5  μ m s−1. Mean swimming speed declined by 8.2% from 30 to 70 s post-activation. Spermatocrit was negatively correlated with curvilinear velocity at 30 s post-activation. Males with short sperm heads maintained their swimming velocity for longer periods that those with long heads. Fulton's condition factor was negatively correlated with straightness of path.  相似文献   

3.
The average rate of swimming speed and the physiological status or stress of individual Atlantic cod Gadus morhua was monitored in response to short-term acute (STA) hypoxia ( i.e. partial pressure of oxygen,     , reduced from 20·9 to 4·3 kPa within 1 h at 10° C). The STA hypoxic response of Atlantic cod was associated with a large primary increase (+29%) and a large secondary decrease (−54%) in swimming speed as well as major physiological stress ( e.g. plasma cortisol = 214·7 ng ml−1 and blood lactate = 2·41 mmol l−1).  相似文献   

4.
The prolonged swimming speed and metabolic rate of 0+ year Arctic grayling Thymallus articus were examined with respect to current velocity, water temperature and fish size, and compared to conditions fish occupy in the river. Oxygen consumption (mg O2 h−1) increased with fish mass and temperature (6–23° C), with a steep increase in metabolic rate between 12 and 16° C. Absolute prolonged swimming speed (cm s−1) increased rapidly with fish size (total length, L T, and mass), however, fish in the natural stream habitat occupied current velocities between 15 and 25 cm s−1 or 4  L T s−1, approximately half their potential prolonged swimming speed (10  L T s−1).  相似文献   

5.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

6.
The effect of thermal environment on condition factor was examined for six different size-classes of Atlantic cod Gadus morhua fed to satiation. A weight–length relationship for 8 to 1303 g fish reared at 4–20°C indicated an allometric growth ( W  =  aL b , a  = 0.0045, b  = 3.257) of cod. Changes in relative condition factor ( K rel) with temperature were described with a second order polynomial. The most pronounced effect of temperature on body condition was found in the smallest size-classes, but the curves flattened with increased size. Temperature had size-dependent effects on the relative condition factor obtained from an overall weight–length relationship for all fish in the experiment, i.e. K rel increased with weight at 4°C, but decreased with weight at 16 and 20°C. K rel remained high for most size-classes at 8 and 12°C. The slopes ( b -values) of the weight–length relationships decreased linearly with temperatures from 4 to 16°C.  相似文献   

7.
Spontaneous locomotor activity of cod Gadus morhua maintained at 6° C tripled from February to May. In contrast, locomotor activity of cod held at 2° C was significantly lower than at 6° C (between 25 and 65% lower) and the seasonal increase was smaller. Plasma levels of both thyroxine (T4) and triiodothyronine (T3) did not differ between 2 and 6° C. T4 injection increased locomotor activity by 10% for both temperature regimes. These data indicate that low water temperature reduces locomotor activity associated with migration in cod and that thyroid hormones are not involved in this decrease. This study provides a possible mechanism through which cold waters may affects migration and distribution of cod via its Effects on locomotor activity and swimming speed.  相似文献   

8.
Carp Cyprinus carpio altered the repertoire of swimming behaviour with increased flume length. While the transition speed from steady to burst–coast swimming was unaffected by flume length, fish reached higher critical swimming speed ( U crit), consequently swimming for longer periods of time in burst–coast mode and hence performing more work before becoming fatigued. Analysis of swimming behaviour of burst–coast swimming revealed an increase in duration and a decrease in distance of forward burst movements with increasing water speeds. Frequency was unaffected by water speed. Overall, longer flumes increased U crit by allowing for less restricted burst–coast swimming behaviour.  相似文献   

9.
Apparent specific dynamic action (SDA) amplitude in young juvenile Atlantic cod Gadus morhua (1 to 8 g wet mass), fed a standardized meal and then exercised in a circular swimming respirometer at a constant swimming speed of 0·5 ± 0·3 body lengths s-1, occurred within l h after feeding in all juveniles. SDA amplitude were 1·4 to 1·8 times higher in fed fish compared to unfed fish, and rates of oxygen consumption decreased as body mass increased. SDA duration had a tendency to decrease with increasing body mass and was shortest, at 6 h, in the smallest fish (1–1·5 g), but increased to 10–11 h in the largest fish. Apparent SDA in fed fish ( R r) scaled with a mass exponent of 0·89, while maximum metabolic rate ( R max) determined by chasing fish to exhaustion and then measuring oxygen consumption for 12 h, and unfed routine metabolic rate (Rr) scaled with a mass exponent of 0·79 and 0·76 respectively. Relative aerobic scope ( R max– unfed R r) did not appear to vary over the 1 to 8 g increase in wet mass. These results show that as body mass increased in young juvenile Atlantic cod: (1) apparent SDA ( R f) increased more rapidly than R max, and (2) apparent SDA took up >98% of the relative aerobic scope and that young Atlantic cod allocated most of the energy to growth, and left little for other metabolic activities.  相似文献   

10.
Prolonged swimming capacity (critical swimming speed, U crit, protocol) and metabolism were measured for 14 Atlantic cod Gadus morhua exposed to seven oxygen levels within the non-lethal range normally encountered in the Gulf of St Lawrence (35 to 100% saturation). Burst-and-coast swimming was triggered earlier (at lower speeds) in hypoxia, and burst-and-coast movements were more frequent in hypoxia than in normoxia at low speeds. Furthermore, the metabolic scope beyond the metabolic rate at which Atlantic cod resorted to burst-and-coast movements decreased gradually as ambient oxygen concentration dropped. Overall, fewer burst-and-coast movements were observed in hypoxia while the distance swum in burst-and-coast mode remained c . 1% of the total distance swam in all tests. Oxygen availability had no effect on the rate of increase in metabolic rate with increasing velocity <50 cm s−1, but limited swimming performances and metabolic rate at higher speeds. The prevailing low oxygen tensions on the bottom in the deep channels may impair the swimming capacity of Atlantic cod in the estuary and northern Gulf of St Lawrence.  相似文献   

11.
Sustained swimming of bluefin tuna was analysed from video recordings made of a captive patrolling fish school [lengths (L) 1.7–3.3 m, body mass (M) 54–433 kg]. Speeds ranged from 0.6 to 1.2 L s−1 (86–260 km day−1) while stride length during steady speed swimming varied between 0.54 and 0.93 L. Maximum swimming speed was estimated by measuring twitch contraction of the anaerobic swimming muscle in pithed fish 5 min after death. Muscle contraction time increased from the shortest just behind the head (30–50 ms at 20% L) to the longest at the tail peduncle (80–90 ms at 80% L) (all at 28°C). A fish (L = 2.26 m) with a muscle contraction time of 50 ms at 25% L can have a maximum tail beat frequency of 10 Hz and maximum swimming speed of 15m s−1 (54km h−1) with a stride length of 0.65L. With a stride length of 1 L a speed of 22.6 m s−1 (81.4 km h−1) is possible. Power used at maximum speed was estimated for this fish at between 10 and 40 kW, with corresponding values for the drag coefficient at a Reynolds number of 4.43 × 107 of 0.0007 and 0.0027.  相似文献   

12.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

13.
The swimming performance of Platycephalus bassensis at steady speed was assessed with an emphasis on hydrodynamics. The minimum swimming speed to maintain hydrostatic equilibrium for P. bassensis of 0·271 m total length ( L T) was calculated to be 1·06 L T s−1. At this speed, the required lift to support the mass of the fish was equivalent to 6·6% of the fish mass; 82·7% of which was created by the body as a hydrofoil, and the rest of which was created by the pelvic fins as hydrofoils. The minimum swimming speed decreased with the L T of the fish and ranged from 1·15 L T s−1 for a fish of 0·209 m to 0·89 L T s−1 for a fish of 0·407 m. The forward movement per tail-beat cycle ( i.e. stride length) was described with an equation including quantities of morphological and hydro-mechanical relevance. This equation explained that stride length was increased by the effect of turbulence characterized by the Reynolds number and demonstrated the morphological and hydro-mechanical functional design of the fish for maximizing thrust and minimizing drag. The larger span of the caudal fin and caudal tail-beat amplitude was associated with larger stride length, whereas greater frictional drag was associated with smaller stride length.  相似文献   

14.
The movement of 34 large (39–73 cm standard length) brown trout Salmo trutta was monitored using radio telemetry for up to 74 days in Brumunda, a small Norwegian river (mean annual discharge 3·3 m3 s−1) flowing into the large Lake Mjøsa. The maximum range of movement in the river was 20 km. No clear relationships existed between individual movement and water discharge, temperature and barometric pressure. Brown trout migrated at all levels of water discharge. At low discharge (<2 m3 s−1) movements were nocturnal. A weir 5·3 km from the outlet restricted ascending brown trout at low ( c . 6° C), but not at high ( c . 8° C) water temperatures. Spawning occurred in September to October and tagged individuals spent 2–51 days at the spawning sites. Mean migration speed from tagging to when the fish reached the spawning area, and from when they left the spawning areas and reached the lake was 1·0 and 2·3 km day−1, respectively. All tagged brown trout that survived spawning returned to the lake after spawning.  相似文献   

15.
Standard metabolic rate (SMR), active metabolic rate (AMR) and critical oxygen saturation ( Scrit ) were measured in Atlantic cod Gadus morhua at 5, 10 and 15° C. The SMR was 35.5, 57.0 and 78.2 mg O2 kg−1 h−1 and Scrit was 16.5, 23.2 and 30.3%, at 5, 10 and 15° C, respectively. Previously reported SMR for Atlantic cod from arctic waters at 4° C was twice that measured at 5° C in the present study. A possible intraspecific latitudinal difference in the SMR is discussed. The AMR was 146.6, 197.9 and 200.4 mg O2 kg−1 h−1 and the critical swimming speed ( Ucrit ) was 1 6, 1.7 and 1.9 at 5, 10 and 15° C, respectively. The maximum oxygen consumption was found to be associated with exercise, rather than recovery from exercise as previously reported in another Study of Cod metabolism.  相似文献   

16.
The body attack angle of common bream Abramis brama varied with swimming speed and was best described by θ = −3·32 (±0·24) − 9·23 (±0·54)e− u ( r 2 = 0·56, P  < 0·0001; ±1 s . e . given in parentheses), where θ is the body attack angle and u is swimming speed. The hypothesis that neutrally buoyant fishes may swim with body attack angles deviating increasingly from 0° as the swimming speed decreases is supported.  相似文献   

17.
The feeding ecology of the larvae of silver hake Merluccius bilinearis was examined during two time periods (October 1998 and December 1992) on the Western Bank, Scotian Shelf, north‐west Atlantic, and compared with the feeding ecology of Atlantic cod Gadus morhua larvae collected in the same samples in December 1992. During both time periods silver hake exhibited strong selection for late stage copepodids and adult copepods at a small size (>3·5 mm total length, L T). The niche width measured as the diet breadth index ( I DB) of silver hake declined rapidly as they increased in size and remained relatively constant from 3 to 11 mm L T, during each time period. Atlantic cod larvae exhibited a broader niche width that was curvilinear over the same L T. Atlantic cod were also less selective than silver hake, incorporating both naupliar and early stage copepodids in their diets throughout the length classes examined. Simple isometric relationships did not explain the differences in diet, as Atlantic cod larvae continued to feed on early stages of copepods at large size, while silver hake larvae quickly switched to large prey items. The strong selection and narrow I DB observed for silver hake probably reflects adaptation to spawning during the periods between major secondary production peaks in temperate waters.  相似文献   

18.
To determine the relation between swimming endurance time and burst swimming speed, elvers of the European eel, Anguilla anguilla (L.), were made to swim at speeds from 3.6 to 7.2 L (body lengths) s−1 in both fresh and sea water. Swimming endurance time of elvers averaging 7.2 cm total length decreased logarithmically with increased swimming speed from 3.0 min at 3.5 L s−1 to 0.7 min at 5.0 L s−1, and again logarithmically but with a lesser slope to 0.27 min at 7.5 L s−1. No differences were found between fresh and sea water elvers. In still water, elvers could swim at high speeds for about 10–45m before exhaustion, depending upon speed. Elvers would be able to make virtually no progress against water currents >50 cm s−1. Drift in coastal water currents and selective tidal transport probably involve swimming speeds below those tested in this study. Migration into freshwater streams undoubtedly involves avoidance of free stream speeds and a combination of burst and sustained swimming.  相似文献   

19.
A reappraisal of activity metabolism in Atlantic cod (Gadus morhua)   总被引:1,自引:0,他引:1  
Atlantic cod ( Gadus morhua ) were forced to swim in a swim tunnel respirometer until fatigued; oxygen consumption rate (O2) was measured during swimming at incremental speeds until the fish was exhausted and during recovery from exhaustion. Maximal oxygen consumption (O2max) occurred during maximal activity as has been found for other fish species, but at odds with the current paradigm for Atlantic cod. Earlier experiments had drawn the conclusion that O2max in Atlantic cod occurs during recovery from exhaustive exercise. We found no support for this paradigm in our experiments and we propose that the respiratory physiology of Atlantic cod is not unlike that of other fishes.  相似文献   

20.
Small‐scale spatial variation in life history was found among genetically distinct local populations of Atlantic cod Gadus morhua from the Norwegian Skagerrak coast. Among populations, age at 50% maturity varied from 2·6 to 3·8 years, total ( L T) length at 50% maturity from 35 to 60 cm, annual survival from 33 to 64%, mean L T at age 4 years from 43 to 63 cm, and mean backcalculated L T at age 1 year from 8 to 12 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号