共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《生物化学与生物物理学报:疾病的分子基础》2022,1868(6):166391
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases. 相似文献
3.
The purpose of this review was to provide an understanding of the role of PGC-1α in the regulation of skeletal muscle metabolism and to describe the results of studies on the association of the polymorphism gene PPARGC1A with human muscle performance. 相似文献
4.
Dae Ryoung Park Jeong Seok Kim Chang Keun Kim 《Journal of Exercise Nutrition & Biochemistry》2014,18(1):1-7
[Purpose]
The purpose of this study was to investigate the effect of Sirtuin 1 (SIRT1) and General control nonderepressible 5 (GCN5) knock down on peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-1α) deacetylation during electrical stimulated skeletal muscle contraction.[Methods]
Skeletal muscle primary cell were isolated from C57BL/6 mice gastrocnemius and transfected lentiviral SIRT1 and GCN5 shRNA. Knock downed muscle cell were stimulated by electrical stimulation (1Hz, 3min) and collected for PGC-1α deceatylation assays. Immunoprecipitation performed for PGC-1α deacetylation, acetyl-lysine level was measured.[Results]
Our resulted showed SIRT1 knock down not influenced to PGC-1α deacetylation during electrical stimulation induced muscle contraction while GCN5 knock down decreased PGC-1α deacetylation significantly (p<0.05).[Conclusion]
This study can be concluded that GCN5 is a critical factor for muscle contraction induced PGC-1α deacetylation. 相似文献5.
6.
7.
Nanami Senoo Noriyuki Miyoshi Naoko Goto-Inoue Kimiko Minami Ryoji Yoshimura Akihito Morita Naoki Sawada Junichiro Matsuda Yoshihiro Ogawa Mitsutoshi Setou Yasutomi Kamei Shinji Miura 《Journal of lipid research》2015,56(12):2286-2296
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle. 相似文献
8.
9.
10.
Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle. 相似文献
11.
Hoeks J Arany Z Phielix E Moonen-Kornips E Hesselink MK Schrauwen P 《Journal of cellular physiology》2012,227(3):1026-1033
Skeletal muscle mitochondrial dysfunction has been linked to several disease states as well as the process of aging. A possible factor involved is the peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), a major player in the regulation of skeletal muscle mitochondrial metabolism. However, it is currently unknown whether PGC-1α, besides stimulating mitochondrial proliferation, also affects the functional capacity per mitochondrion. Therefore, we here tested whether PGC-1α overexpression, besides increasing mitochondrial content, also leads to intrinsic mitochondrial adaptations. Skeletal muscle mitochondria from 10 male, muscle-specific PGC-1α overexpressing mice (PGC-1αTg) and 8 wild-type (WT) mice were isolated. Equal mitochondrial quantities were then analyzed for their oxidative capacity by high-resolution respirometry, fuelled by a carbohydrate-derived (pyruvate) and a lipid (palmitoyl-CoA plus carnitine) substrate. Additionally, mitochondria were tested for reactive oxygen species (superoxide) production and fatty acid (FA)-induced uncoupling. PGC-1αTg mitochondria were characterized by an improved intrinsic mitochondrial fat oxidative capacity as evidenced by pronounced increase in ADP-stimulated respiration (P < 0.001) and maximal uncoupled respiration (P < 0.001) upon palmitoyl-CoA plus carnitine. Interestingly, intrinsic mitochondrial capacity on a carbohydrate-derived substrate tended to be reduced. Furthermore, the sensitivity to FA-induced uncoupling was diminished in PGC-1αTg mitochondria (P = 0.02) and this was accompanied by a blunted reduction in mitochondrial ROS production upon FAs in PGC-1αTg versus WT mitochondria (P = 0.04). Uncoupling protein 3 (UCP3) levels were markedly reduced in PGC-1αTg mitochondria (P < 0.001). Taken together, in addition to stimulating mitochondrial proliferation in skeletal muscle, we show here that overexpression of PGC-1α leads to intrinsic mitochondrial adaptations that seem restricted to fat metabolism. 相似文献
12.
13.
Frier BC Wan Z Williams DB Stefanson AL Wright DC 《American journal of physiology. Cell physiology》2012,302(12):C1772-C1779
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and is controlled, at least in part, through AMP-activated protein kinase and p38-dependent pathways. There is evidence demonstrating that activation of these kinases and induction of PGC-1α in skeletal muscle are regulated by catecholamines. The purpose of the present study was to determine if consumption of a high-fat diet (HFD) impairs epinephrine and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) signaling and induction of PGC-1α in rat skeletal muscle. Male Wistar rats were fed chow or a HFD for 6 wk and then given a weight-adjusted bolus injection of epinephrine (20, 10, or 5 μg/100 g body wt sc) or saline, and triceps muscles were harvested 30 min (signaling) or 2 and 4 h (gene expression) postinjection. Despite blunted increases in p38 phosphorylation, the ability of epinephrine to induce PGC-1α was intact in skeletal muscle from HFD-fed rats and was associated with normal increases in activation of PKA and phosphorylation of cAMP response element-binding protein, reputed mediators of PGC-1α expression. The attenuated epinephrine-mediated increase in p38 phosphorylation was independent of increases in MAPK phosphatase 1. At 2 h following AICAR treatment (0.5 g/kg body wt sc), AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation were similar in skeletal muscle from chow- and HFD-fed rats. Surprisingly, AICAR-induced increases in PGC-1α mRNA levels were greater in skeletal muscle from HFD-fed rats. Our results demonstrate that the ability of epinephrine and AICAR to induce PGC-1α remains intact in skeletal muscle from HFD-fed rats. These results question the existence of reduced β-adrenergic responsiveness in diet-induced obesity and demonstrate that increases in p38 phosphorylation are not required for induction of PGC-1α in muscle from obese rats. 相似文献
14.
Luo Z Ma L Zhao Z He H Yang D Feng X Ma S Chen X Zhu T Cao T Liu D Nilius B Huang Y Yan Z Zhu Z 《Cell research》2012,22(3):551-564
Impaired aerobic exercise capacity and skeletal muscle dysfunction are associated with cardiometabolic diseases. Acute administration of capsaicin enhances exercise endurance in rodents, but the long-term effect of dietary capsaicin is unknown. The capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1) cation channel has been detected in skeletal muscle, the role of which remains unclear. Here we report the function of TRPV1 in cultured C2C12 myocytes and the effect of TRPV1 activation by dietary capsaicin on energy metabolism and exercise endurance of skeletal muscles in mice. In vitro, capsaicin increased cytosolic free calcium and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in C2C12 myotubes through activating TRPV1. In vivo, PGC-1α in skeletal muscle was upregulated by capsaicin-induced TRPV1 activation or genetic overexpression of TRPV1 in mice. TRPV1 activation increased the expression of genes involved in fatty acid oxidation and mitochondrial respiration, promoted mitochondrial biogenesis, increased oxidative fibers, enhanced exercise endurance and prevented high-fat diet-induced metabolic disorders. Importantly, these effects of capsaicin were absent in TRPV1-deficient mice. We conclude that TRPV1 activation by dietary capsaicin improves energy metabolism and exercise endurance by upregulating PGC-1α in skeletal muscles. The present results indicate a novel therapeutic strategy for managing metabolic diseases and improving exercise endurance. 相似文献
15.
Natalia Gomes Gonçalves Stephanie Heffer Cavaletti Carlos Augusto Pasqualucci Milton Arruda Martins Chin Jia Lin 《Genes & nutrition》2017,12(1):33
Background
The inverse relationship between exercise capacity and its variation over time and both cardiovascular and all-cause mortality suggests the existence of an etiological nexus between cardiometabolic diseases and the molecular regulators of exercise capacity. Coordinated adaptive responses elicited by physical training enhance exercise performance and metabolic efficiency and possibly mediate the health benefits of physical exercise. In contrast, impaired expression of genes involved in mitochondrial biogenesis or protein turnover in skeletal muscle—key biological processes involved in adaptation to physical training—leads to insulin resistance and obesity. Ingestion of fructose has been shown to suppress the exercise-induced GLUT4 response in rat skeletal muscle. To evaluate in greater detail how fructose ingestion might blunt the benefits of physical training, we investigated the effects of fructose ingestion on exercise induction of genes that participate in regulation of mitochondrial biogenesis and protein turnover in rat’s skeletal muscle.Methods
Eight-week-old Wistar rats were randomly assigned to sedentary (C), exercise (treadmill running)-only (E), fructose-only (F), and fructose + exercise (FE) groups and treated accordingly for 8 weeks. Blood and quadriceps femoris were collected for biochemistry, serum insulin, and gene expression analysis. Expression of genes involved in regulation of mitochondrial biogenesis and autophagy, GLUT4, and ubiquitin E3 ligases MuRF-1, and MAFbx/Atrogin-1 were assayed with quantitative real-time polymerase chain reaction.Results
Aerobic training improved exercise capacity in both E and FE groups. A main effect of fructose ingestion on body weight and fasting serum triglyceride concentration was detected. Fructose ingestion impaired the expression of PGC-1α, FNDC5, NR4A3, GLUT4, Atg9, Lamp2, Ctsl, Murf-1, and MAFBx/Atrogin-1 in skeletal muscle of both sedentary and exercised animals while expression of Errα and Pparδ was impaired only in exercised rats.Conclusions
Our results show that fructose ingestion impairs the expression of genes involved in biological processes relevant to exercise-induced remodeling of skeletal muscle. This might provide novel insight on how a dietary factor contributes to the genesis of disorders of glucose metabolism.16.
Laker RC Wlodek ME Wadley GD Gallo LA Meikle PJ McConell GK 《American journal of physiology. Endocrinology and metabolism》2012,302(10):E1221-E1230
We have previously shown that 4 wk of exercise training early in life normalizes the otherwise greatly reduced pancreatic β-cell mass in adult male rats born small. The aim of the current study was to determine whether a similar normalization in adulthood of reduced skeletal muscle mitochondrial biogenesis markers and alterations in skeletal muscle lipids of growth-restricted male rats occurs following early exercise training. Bilateral uterine vessel ligation performed on day 18 of gestation resulted in Restricted offspring born small (P < 0.05) compared with both sham-operated Controls and a sham-operated Reduced litter group. Offspring remained sedentary or underwent treadmill running from 5-9 (early exercise) or 20-24 (later exercise) wk of age. At 24 wk of age, Restricted and Reduced litter offspring had lower (P < 0.05) skeletal muscle peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein expression compared with Control offspring. Early exercise training had the expected effect of increasing skeletal muscle markers of mitochondrial biogenesis, but, at this early age (9 wk), there was no deficit in Restricted and Reduced litter skeletal muscle mitochondrial biogenesis. Unlike our previous observations in pancreatic β-cell mass, there was no "reprogramming" effect of early exercise on adult skeletal muscle such that PGC-1α was lower in adult Restricted and Reduced litter offspring irrespective of exercise training. Later exercise training increased mitochondrial biogenesis in all groups. In conclusion, although the response to exercise training remains intact, early exercise training in rats born small does not have a reprogramming effect to prevent deficits in skeletal muscle markers of mitochondrial biogenesis in adulthood. 相似文献
17.
Summermatter S Thurnheer R Santos G Mosca B Baum O Treves S Hoppeler H Zorzato F Handschin C 《American journal of physiology. Cell physiology》2012,302(1):C88-C99
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply. 相似文献
18.
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR-PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement. 相似文献
19.