首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bartolomei  F.  Gastaldi  M.  Massacrier  A.  Planells  R.  Nicolas  S.  Cau  P. 《Brain Cell Biology》1997,26(10):667-678
Several lines of evidence underscore a possible role of voltage-gated Na+ channels (NaCH) in epilepsy. We compared the regional distribution of mRNAs coding for Na+ channel α subunit I, II and III in brains from control and kainate-treated rats using non-radioactive in situ hybridization with subtype-specific digoxigenin-labelled cRNA probes. Labelling intensity was evaluated by a densitometric analysis of digitized images. Heterogeneous distribution of the three Na+ channel mRNAs was demonstrated in brain from adult control rats, which confirmed previous studies. Subtype II mRNAs were shown to be abundant in cerebellum and hippocampus. Subtype I mRNAs were also detected in these areas. Subtype III mRNAs were absent in cerebellar cortex, but significantly expressed in neurons of the medulla oblongata and hippocampus. The three subtypes were differentially distributed in neocortical layers. Subtype II mRNAs were present in all of the layers, but mRNAs for subtypes I and III were concentrated in pyramidal cells of neocortex layers IV–V. During kainate-induced seizures, we observed an increase in Na+ channel II and III mRNA levels in hippocampus. In dentate gyrus, subtype III mRNAs increased 3 h after K A administration to a maximum at 6 h. At this latter time, a lower increase in NaCh III mRNAs was also recorded in areas CA1 and CA3. NaCh III overexpression in dentate gyrus persisted for at least 24 h. In the same area, NaCh II mRNAs were also increased with a peak 3 h after K A injection and a return to control levels by 24 h. No changes in NaCh I mR NAs were seen. The K A-induced up-regulation in NaCh mR NAs probably resulted in an increase in hippocampal neuronal excitability.  相似文献   

2.
To examine the effects of gonadal steroids on the pretranslational regulation of the gonadotropin subunits in the female, adult female rats, beginning 7 or 28 days after ovariectomy, received daily injections of testosterone propionate (T), dihydrotestosterone propionate (D), or estradiol benzoate (E) for 7 days. Intact cycling females and ovariectomized rats that received vehicle served as controls. Serum was obtained for LH and FSH levels to assess changes in gonadotropin secretion. Total RNA from individual rats was recovered and analyzed by blot hybridization with specific radiolabeled cDNA probes for the alpha, LH beta, and FSH beta subunits. Autoradiographic bands were quantitated and standardized to mRNA levels in the intact animals. Ovariectomy resulted in a rise in serum gonadotropin levels and all three gonadotropin subunit mRNA levels. Estrogen replacement resulted in suppression of alpha, LH beta, and FSH beta mRNAs whether given at 7 or 28 days after ovariectomy. In contrast, whereas androgen replacement decreased alpha and LH beta mRNAs, D or T did not consistently suppress FSH beta mRNAs. We conclude that chronic estrogen administration to the castrated female rat uniformly suppresses all three gonadotropin subunit mRNA levels. In female rats, as in male rats, chronic androgen administration fails to negatively regulate FSH beta mRNAs.  相似文献   

3.
FSH beta, as well as LH beta, and alpha-subunit mRNA levels were examined in the pituitary glands of male rats after sex steroid replacement at various times (7, 28, or 90 days) after orchiectomy. Testosterone propionate, dihydrotestosterone propionate, or 17 beta-estradiol benzoate (E) were administered daily for 7 days before killing, to assess the role of different gonadal steroids on gonadotropin subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using rat FSH beta genomic DNA, and alpha and LH beta cDNAs. At all time points, alpha and LH beta mRNAs increased after gonadectomy and fell toward normal levels with either androgen or estrogen replacement. FSH beta mRNA levels increased variably postcastration: 4-fold at 7 days, 2-fold at 28 days, and 4- to 5-fold at 90 days. Although E replacement uniformly suppressed FSH beta mRNAs, neither testosterone propionate nor dihydrotestosterone propionate administration suppressed FSH beta mRNA levels at any time point after orchiectomy. These data demonstrate that there is a relative lack of negative regulation of FSH beta mRNA levels by androgens in a paradigm in which E administration results in marked negative regulation of FSH beta mRNA levels. Thus, in the male rat, estrogens negatively regulate all three gonadotropin subunit mRNA levels while androgens negative regulate LH beta and alpha-subunit but fail to suppress FSH beta mRNAs.  相似文献   

4.
Total RNA extracted from developing calvarial bones of 15- to 18-week human fetuses was studied by Northern hybridization: in addition to high levels of type I collagen mRNAs, the presence of mRNAs for type III and type IV collagen, TGF-beta and c-fos was observed. In situ hybridization of sections containing calvarial bone, overlying connective tissues, and skin was employed to identify the cells containing these mRNAs. Considerable variation was observed in the distribution of pro alpha 1(I) collagen mRNA in osteoblasts: the amount of the mRNA in cells at or near the upper surface of calvarial bone was distinctly greater than that in cells at the lower surface, indicating the direction of bone growth. High levels of type I collagen mRNAs were also detected in fibroblasts of periosteum, dura mater, and skin. Type III collagen mRNA revealed a considerably different distribution: the highest levels were detected in upper dermis, lower levels were seen in fibroblasts of the periosteum and the fibrous mesenchyme between bone spiculas, and none was seen in osteoblasts. Type IV collagen mRNAs were only observed in the endothelial cells of blood capillaries. Immunohistochemical localization of type III and IV collagens agreed well with these observations. The distribution of TGF-beta mRNA resembled that of type I collagen mRNA. In addition, high levels of TGF-beta mRNA were observed in osteoclasts of the calvarial bone. These cells, responsible for bone resorption, were also found to contain high levels of c-fos mRNA. Production of TGF-beta by osteoclasts and its activation by the acidic environment could form a link between bone resorption and new matrix formation.  相似文献   

5.
Carbon tetrachloride-induced liver damage is a well-characterized experimental model for studying liver fibrosis. We used this model to examine alpha 1(I), alpha 1(III), and alpha 1(IV) procollagen mRNA levels during the development of liver fibrosis. Rats were given 0.5 ml of carbon tetrachloride/kg of body weight for 1-6 weeks. The liver tissue was assayed for collagen content by measuring total hydroxyproline content. Specific increases in procollagen mRNAs were assayed by slot blot hybridization. There was a significant increase in hydroxyproline content of liver tissue following 3 weeks of carbon tetrachloride treatment. The increase in tissue collagen content correlated with an increase in alpha 1(I) procollagen mRNA levels. At 5 and 6 weeks of treatment, there was an increase in alpha 1(III) procollagen mRNA levels. alpha 1(IV) procollagen levels increased slightly with five injections of carbon tetrachloride treatment. These results suggest that specific increases in procollagen mRNAs in liver fibrosis parallel, but do not precede, increases in tissue collagen content.  相似文献   

6.
Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse IGF-IA and IGF-IB mRNAs using SYBR Green real-time RT-PCR. In the liver, IGF-I mRNA expression increased from 10 days of age to 45 days. In the uterus and ovary, IGF-I mRNA expression increased from 21 days of age, and then decreased at 45 days. In the kidney, IGF-I mRNA expression decreased from 10 days of age. IGF-IA mRNA levels were higher than IGF-IB mRNA levels in all organs examined. Estradiol-17beta (E2) treatment in ovariectomized mice increased uterine IGF-IA and IGF-IB mRNA levels from 3 hr after injection, and highest levels for both mRNAs were detected at 6 hr, and relative increase was greater for IGF-IB mRNA than for IGF-IA mRNA. These results suggest that expression of IGF-I mRNA variants is regulated in organ-specific and age-dependent manners, and estrogen is involved in the change of IGF-I mRNA variant expression.  相似文献   

7.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

8.
Expression of GLUT-4 and insulin receptor mRNAs was investigated in rat skeletal muscle by Northern hybridization. GLUT-4 mRNA was barely detectable in foetal muscle, was expressed at low levels by 1-8 days and at 2-3-fold higher levels during and after weaning (18-40 days). In contrast there was little change in insulin receptor mRNA levels prior to weaning and a reduction in mRNA abundance between 18 and 40 days. Weaning rats on to a diet rich in fat prevented the increase in GLUT-4 abundance seen between 15 and 29 days in animals weaned on a high-carbohydrate diet.  相似文献   

9.
10.
The cellular localization of retinol-binding protein (RBP) messenger RNA (mRNA) in the kidney, and the developmental pattern of the renal expression of the RBP gene, were studied in the Sprague-Dawley rat. In situ hybridization studies were conducted with single-stranded cRNA probes, using sections of adult and young rat kidneys. These studies revealed specific localization of RBP mRNA in the outer stripe of the medulla, specifically localized in the S3 segment of the proximal tubules. Northern blot analysis demonstrated that RBP mRNA was not detectable in the kidney before birth or during the first week postpartum, but was clearly detected by the end of the second week of age. No RBP mRNA was observed in the kidney by in situ hybridization at 12 days of age. At 26 days of age, however, RBP mRNA was clearly detected by the in situ hybridization technique, localized in the same anatomic region as that observed in the adult kidney. Transthyretin mRNA was not detected in the adult kidney. Previous studies have shown that immunoreactive RBP is localized in the convoluted segment of the proximal tubules of the rat kidney. The present results demonstrate that RBP mRNA in the kidney is localized in an anatomic region (the S3 segment of the proximal tubules) different from that of immunoreactive RBP. In addition, an intense RBP mRNA hybridization signal was detected in the perinephric fat tissue of 26- and 40-day-old and adult rats. Further analysis of RNA from epididymal fat showed a level of RBP mRNA approximately 20% of that of liver. The function of RBP synthesized in the kidney and adipose tissue remains to be determined. We have previously hypothesized that RBP synthesized in extrahepatic tissue may function in the recycling of retinol back to the liver or to other target tissues.  相似文献   

11.
S Beckh 《FEBS letters》1990,262(2):317-322
RNA blot hybridization analyses using probes specific for sodium channels I, II and III revealed high levels of sodium channel I mRNA and low levels of sodium channel II and III mRNAs in peripheral nervous system (PNS) tissues. The developmental expression patterns of these mRNAs were generally similar to those described for the central nervous system. The small amounts of sodium channel I and III mRNAs present in tongue muscle were greatly reduced after partial denervation. Expression of the three sodium channels thus appears to be restricted to the nervous system. Putative novel additional mRNAs, specifically expressed in the PNS, were detected with a probe that recognizes nucleotide sequences common to sodium channels I, II and III.  相似文献   

12.
13.
Cells involved in the synthesis of collagen types I and II in the cornea of developing chick embryos have been studied by using in situ hybridization and immunohistochemistry. Corneas processed for in situ hybridization with the type I and II collagen probes demonstrated specific mRNAs in the epithelium of embryos at stage 18 with an increase at stages between 26 and 31, and then gradual decrease to the background level in the next several days. In the endothelium, a small amount of specific mRNA was recognized through these stages. In the stroma, only sections hybridized with the type I probe demonstrated mRNA in fibroblasts. Immunostaining demonstrated specific collagen types in the stroma at sites which were closely associated with cells containing specific mRNAs. Both collagens type I and II were present beneath the epithelium as narrow bands at stage 18; as the thicker primary stroma at stages 20 and 26; and as subepithelial, subendothelial and stromal staining at stage 31. Thereafter, type I collagen was increased in the stroma but it was also noted in the subepithelial and, to a lesser degree, subendothelial regions, whereas type II collagen was gradually confined to the subendothelial matrix. Electron microscopic examination of sections from 5-day-old (stage-27) embryo corneas using antibodies against the carboxyl propeptides of type I and II procollagens revealed the presence of these procollagens within the cisternae of the endoplasmic reticulum and Golgi vesicles in both epithelial and endothelial cells. In the epithelial cells both the periderm and basal cells contained these procollagens within the cytoplasmic organelles. These results indicate that not only the epithelial cells, but also the endothelial cells secrete collagen types I and II during the formation of the primary corneal stroma and for several days after invasion of fibroblasts.  相似文献   

14.
Alternative splicing of insulin-like growth factor I (IGF-I)/somatomedin C mRNAs generates two IGF-I mRNAs coding for IGF-I peptides with different sequences in the E domain of the IGF-I prohormone. These two mRNAs encode alternative E peptides due to the presence (IGF-Ib) or absence (IGF-Ia) of a 52-base insert in the region coding for the E domain. We have used a solution hybridization/RNase protection assay to determine the tissue distribution and regulation by GH of the expression of these alternative IGF-I mRNAs. IGF-Ib mRNAs are present in low abundance (representing approximately 2.5% of the total IGF-I mRNA) in heart, lung, muscle, testes, stomach, kidney, and brain, but represent approximately 13% of the IGF-I mRNA in liver. GH treatment of hypophysectomized rats increased steady-state IGF-I mRNA levels in liver, kidney, lung, and heart. In kidney, lung, and heart, IGF-Ia and IGF-Ib mRNA levels were coordinately regulated by GH, but, in liver, the fold increase in IGF-Ib mRNA levels was approximately three times greater than the fold increase in IGF-Ia mRNA levels. These data suggest that the processing of IGF-I mRNA in liver is different than in nonhepatic tissues. These results also further elucidate the organization of the rat IGF-I gene as well as the generation of multiple IGF-I mRNAs by alternative splicing.  相似文献   

15.
Collagen VI expression was studied in cultured human skin fibroblasts and mouse 3T3 cells using cDNA probes specific for alpha 1(VI), alpha 2(VI), and alpha 3(VI) chains. A 2-3-fold increase of these mRNAs was observed when fibroblasts were grown at increasing densities while only minimal changes occurred for the mRNA levels of collagens I and III, fibronectin, and beta-actin. Changes in mRNA correlated well with an increased production of corresponding proteins as determined by immunological assays. A comparable increase of alpha 1(VI) and alpha 2(VI) but not of alpha 3(VI) chain mRNAs was found for fibroblasts grown in a three-dimensional collagen gel after gel contraction. These conditions resulted, however, in a decrease of steady-state levels of collagens I and III and actin mRNAs. Transformation of 3T3 cells by phorbol ester did not change collagen VI mRNAs but caused a 3-5-fold reduction in mRNA levels for the other extracellular matrix proteins. These data strongly imply different regulatory mechanisms for the expression of collagen VI compared with collagens I and III and fibronectin. The differences may be correlated to changes in cell shape and reflect the requirement for collagen VI as a cell-binding protein.  相似文献   

16.
The insulin-like growth factor-binding proteins IGFBP-1 and IGFBP-2 are low mol wt IGFBPs that are similar in structure. They are not glycosylated and have a homologous amino acid sequence, including the number and position of 18 cysteine residues and a carboxyl-terminal Arg-Gly-Asp sequence that can be recognized by cell adhesion receptors. The present study demonstrates that expression of mRNAs encoding the two BPs differs in some fetal rat tissues and in the livers of adult rats after hypophysectomy, fasting, or streptozotocin-induced diabetes. As determined by Northern blot hybridization using cDNA probes for rat IGFBP-2 or human IGFBP-1, both mRNAs are expressed at high levels in liver of 21-day gestation and 1-day-old rats and at lower levels in 21- and 65-day-old rat liver. Levels of both mRNAs are higher in liver than in other fetal rat tissues. The relative abundance of the two mRNAs in most fetal tissues is similar to that in liver, except that kidney and brain have 8-fold and more than 25-fold higher relative levels of IGFBP-2 mRNA, respectively. IGFBP-2 mRNA is about 10- to 20-fold increased after hypophysectomy or fasting, whereas IGFBP-1 mRNA is relatively unchanged. IGFBP-2 mRNA levels are decreased completely by refeeding fasted rats for 3 days, but only partially decreased by treatment of hypophysectomized rats with GH, cortisone acetate, T4, and testosterone for 4 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A method was developed for measuring in vivo rates of mRNA synthesis in mice by pulse-labeling with the RNA precursor [3H]orotate and then using hybridization to recover specific mRNAs. The efficiency of recovery is determined with synthetic RNAs as internal hybridization standards. The method is particularly applicable to the kidney since this organ shows a strong preferential uptake of the label. Rates of synthesis, expressed as a fraction of total RNA synthesis, were measured for the androgen-inducible mRNAs coding for beta-glucuronidase (GUS), ornithine decarboxylase (ODC), the protein coded by the RP-2 gene, and the so-called kidney androgen-regulated protein (KAP). Control mRNAs coded for beta-actin, phosphoenolpyruvate carboxykinase, and major urinary protein. Testosterone markedly increased the synthesis of the androgen-inducible mRNAs, but not the control mRNAs. Induction was not seen in mutant mice lacking functional androgen receptor protein. For GUS, ODC, and RP-2 mRNAs, the fold induction of synthesis was less than the fold induction of concentration, suggesting that mRNA stabilization also plays a part in the response to androgen. For GUS, ODC, and RP-2 mRNAs, but not KAP mRNA, induction of synthesis was rapidly reversed after testosterone removal. KAP mRNA was also exceptional in that its concentration was disproportionately high compared with its rate of synthesis, implying that it is a particularly stable mRNA.  相似文献   

18.
19.
The levels of delta- and beta-crystallin mRNAs were examined by cDNA hybridization in the embryonic and posthatched chicken eye lens. Four different cloned beta-crystallin cDNAs were used, allowing discrimination among different members of the beta-crystallin family. Each crystallin mRNA displayed a characteristic temporal and spatial pattern in the developing lens. delta-Crystallin mRNA accumulated rapidly during early embryonic development; by contrast, the beta-crystallin mRNAs began to accumulate rapidly near the end of embryogenesis. Both delta- and beta-crystallin mRNAs increased in the lens for the first month after hatching and began to decrease 3 months after hatching. The levels of the delta- and the different beta-crystallin mRNAs were also differentially regulated in cultured embryonic lens epithelia. The most fiber cell specific crystallin gene product in the differentiating lens was the beta 35 mRNA. These experiments provide a quantitative basis for exploring the differential expression of the delta- and beta-crystallin gene families in the chicken lens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号