首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The umuDC genes are part of the Escherichia coli SOS response, and their expression is induced as a consequence of DNA damage. After induction, they help to promote cell survival via two temporally separate pathways. First, UmuD and UmuC together participate in a cell cycle checkpoint control; second, UmuD'(2)C enables translesion DNA replication over any remaining unrepaired or irreparable lesions in the DNA. Furthermore, elevated expression of the umuDC gene products leads to a cold-sensitive growth phenotype that correlates with a rapid inhibition of DNA synthesis. Here, using two mutant umuC alleles, one that encodes a UmuC derivative that lacks a detectable DNA polymerase activity (umuC104; D101N) and another that encodes a derivative that is unable to confer cold sensitivity but is proficient for SOS mutagenesis (umuC125; A39V), we show that umuDC-mediated cold sensitivity can be genetically separated from the role of UmuD'(2)C in SOS mutagenesis. Our genetic and biochemical characterizations of UmuC derivatives bearing nested deletions of C-terminal sequences indicate that umuDC-mediated cold sensitivity is not due solely to the single-stranded DNA binding activity of UmuC. Taken together, our analyses suggest that umuDC-mediated cold sensitivity is conferred by an activity of the UmuD(2)C complex and not by the separate actions of the UmuD and UmuC proteins. Finally, we present evidence for structural differences between UmuD and UmuD' in solution, consistent with the notion that these differences are important for the temporal regulation of the two separate physiological roles of the umuDC gene products.  相似文献   

2.
A number of highly specialized DNA polymerases with the ability to replicate through DNA lesions have been identified. In this issue of Structure, Nair et al. show how one such polymerase, yeast Rev1, accomplishes the DNA lesion bypass task.  相似文献   

3.
DNA lesion bypass is an important cellular response to genomic damage during replication. Human DNA polymerase η (Polη), encoded by the Xeroderma pigmentosum variant (XPV) gene, is known for its activity of error-free translesion synthesis opposite a TT cis-syn cyclobutane dimer. Using purified human Polη, we have examined bypass activities of this polymerase opposite several other DNA lesions. Human Polη efficiently bypassed a template 8-oxoguanine, incorporating an A or a C opposite the lesion with similar efficiencies. Human Polη effectively bypassed a template abasic site, incorporating an A and less frequently a G opposite the lesion. Significant –1 deletion was also observed when the template base 5′ to the abasic site is a T. Human Polη partially bypassed a template (+)-trans-anti-benzo[a]pyrene-N2-dG and predominantly incorporated an A, less frequently a T, and least frequently a G or a C opposite the lesion. This specificity of nucleotide incorporation correlates well with the known mutation spectrum of (+)-trans-anti-benzo[a]pyrene-N2-dG lesion in mammalian cells. These results show that human Polη is capable of error-prone translesion DNA syntheses in vitro and suggest that Polη may bypass certain lesions with a mutagenic consequence in humans.  相似文献   

4.
In wild-type Escherichia coli, translesion replication is largely dependent upon the UmuD'(2)C complex (DNA polymerase V [polV]) or its plasmid-encoded homologs, such as MucA'(2)B. Interestingly, both the efficiency of translesion replication of a T-T cis-syn dimer and the spectra of mutations observed are different in Umu- and Muc-expressing strains. We have investigated whether the polIII core is responsible for these differences by measuring the frequency of dimer bypass, the error rate of bypass, and the resulting mutation spectrum in mutants carrying a deletion of dnaQ (epsilon subunit) or holE (theta subunit) or carrying the dnaQ allele mutD5, which is deficient in proofreading but is competent in the structural function of epsilon, or the dnaE antimutator allele spq-2. The chromosomal copy of the umuDC operon was deleted in each strain, and the UmuDC, UmuD'C, MucAB, or MucA'B proteins were expressed from a low-copy-number plasmid. With only few exceptions, we found that the characteristically different mutation spectra resulting from Umu- and Muc-mediated bypass are maintained in all of the strains investigated, indicating that differences in the activity or structure of the polIII core are not responsible for the observed phenotype. We also demonstrate that the MucA'(2)B complex is more efficient in promoting translesion replication than the UmuD'(2)C proteins and show that, contrary to expectation, the T-T dimer is bypassed more accurately by MucA'(2)B than by UmuD'(2)C. These results are consistent with the view that in a wild-type cell, the polV-like enzymes are responsible for the spectra of mutations generated during translesion replication and that polIII may simply be required to fix the misincorporations as mutations by completing chromosomal replication. Our observations also show that the mutagenic properties of a lesion can depend strongly on the particular enzyme employed in bypass.  相似文献   

5.
The 3 million-base pair genome of Sulfolobus solfataricus likely undergoes depurination/depyrimidination frequently in vivo. These unrepaired abasic lesions are expected to be bypassed by Dpo4, the only Y-family DNA polymerase from S. solfataricus. Interestingly, these error-prone Y-family enzymes have been shown to be physiologically vital in reducing the potentially negative consequences of DNA damage while paradoxically promoting carcinogenesis. Here we used Dpo4 as a model Y-family polymerase to establish the mechanistic basis for DNA lesion bypass. While showing efficient bypass, Dpo4 paused when incorporating nucleotides directly opposite and one position downstream from an abasic lesion because of a drop of several orders of magnitude in catalytic efficiency. Moreover, in disagreement with a previous structural report, Dpo4-catalyzed abasic bypass involves robust competition between the A-rule and the lesion loop-out mechanism and is governed by the local DNA sequence. Analysis of the strong pause sites revealed biphasic kinetics for incorporation indicating that Dpo4 primarily formed a nonproductive complex with DNA that converted slowly to a productive complex. These strong pause sites are mutational hot spots with the embedded lesion even affecting the efficiency of five to six downstream incorporations. Our results suggest that abasic lesion bypass requires tight regulation to maintain genomic stability.  相似文献   

6.
DNA polymerase eta (Pol(eta), xeroderma pigmentosum variant, or Rad30) plays an important role in an error-free response to unrepaired UV damage during replication. It faithfully synthesizes DNA opposite a thymine-thymine cis-syn-cyclobutane dimer. We have purified the yeast Pol(eta) and studied its lesion bypass activity in vitro with various types of DNA damage. The yeast Pol(eta) lacked a nuclease or a proofreading activity. It efficiently bypassed 8-oxoguanine, incorporating C, A, and G opposite the lesion with a relative efficiency of approximately 100:56:14, respectively. The yeast Pol(eta) efficiently incorporated a C opposite an acetylaminofluorene-modified G, and efficiently inserted a G or less frequently an A opposite an apurinic/apyrimidinic (AP) site but was unable to extend the DNA synthesis further in both cases. However, some continued DNA synthesis was observed in the presence of the yeast Pol(zeta) following the Pol(eta) action opposite an AP site, achieving true lesion bypass. In contrast, the yeast Pol(alpha) was able to bypass efficiently a template AP site, predominantly incorporating an A residue opposite the lesion. These results suggest that other than UV damage, Pol(eta) may also play a role in bypassing additional DNA lesions, some of which can be error-prone.  相似文献   

7.
High-efficiency bypass of DNA damage by human DNA polymerase Q   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous DNA damage arises frequently, particularly apurinic (AP) sites. These must be dealt with by cells in order to avoid genotoxic effects. DNA polymerase theta; is a newly identified enzyme encoded by the human POLQ gene. We find that POLQ has an exceptional ability to bypass an AP site, inserting A with 22% of the efficiency of a normal template, and continuing extension as avidly as with a normally paired base. POLQ preferentially incorporates A opposite an AP site and strongly disfavors C. On nondamaged templates, POLQ makes frequent errors, incorporating G or T opposite T about 1% of the time. This very low fidelity distinguishes POLQ from other A-family polymerases. POLQ has three sequence insertions between conserved motifs in its catalytic site. One insert of approximately 22 residues into the tip of the polymerase thumb subdomain is predicted to confer considerable flexibility and additional DNA contacts to affect enzyme fidelity. POLQ is the only known enzyme that efficiently carries out both the insertion and extension steps for bypass of AP sites, commonly formed as endogenous genomic lesions.  相似文献   

8.
DNA damage that eludes cellular repair pathways can arrest the replication machinery and stall the cell cycle. However, this damage can be bypassed by the Y-family DNA polymerases. Here, Dpo4, an archetypal Y-family member from the thermophilic Sulfolobus solfataricus, was used to extend our kinetic studies of the bypass of an abasic site, one of the most mutagenic and ubiquitous cellular lesions. A short oligonucleotide sequencing assay is developed to directly sequence DNA bypass products synthesized by Dpo4. Our results show that incorporation upstream of the abasic lesion is replicated error-free; yet dramatically, once Dpo4 encounters the lesion, synthesis became sloppy, with bypass products containing a myriad of mutagenic events. Incorporation of dAMP (29%) and dCMP (53%) opposite the abasic lesion at 37 degrees C correlates exceptionally well with our kinetic results and demonstrates two dominant bypass pathways via the A-rule and the lesion loop-out mechanism. Interestingly, the percentage of overall frameshift mutations increased from 71 (37 degrees C) to 87% (75 degrees C). Further analysis indicates that lesion bypass via the A-rule is strongly preferred over the lesion loop-out mechanism at higher temperatures and concomitantly reduces the occurrence of "-1 deletion" mutations observed opposite the lesion at lower temperatures. The bypass percentage via the latter pathway is confirmed by an enzymatic digestion assay, verifying the reliability of our sequencing assay. Our results demonstrate that an abasic lesion causes Dpo4 and possibly all Y-family members to switch from a normal to a very mutagenic mode of replication.  相似文献   

9.
The enzyme ribonucleotide reductase, responsible for the synthesis of deoxyribonucleotides (dNTP), is upregulated in response to DNA damage in all organisms. In Saccharomyces cerevisiae, dNTP concentration increases ~6- to 8-fold in response to DNA damage. This concentration increase is associated with improved tolerance of DNA damage, suggesting that translesion DNA synthesis is more efficient at elevated dNTP concentration. Here we show that in a yeast strain with all specialized translesion DNA polymerases deleted, 4-nitroquinoline oxide (4-NQO) treatment increases mutation frequency ~3-fold, and that an increase in dNTP concentration significantly improves the tolerance of this strain to 4-NQO induced damage. In vitro, under single-hit conditions, the replicative DNA polymerase ε does not bypass 7,8-dihydro-8-oxoguanine lesion (8-oxoG, one of the lesions produced by 4-NQO) at S-phase dNTP concentration, but does bypass the same lesion with 19–27% efficiency at DNA-damage-state dNTP concentration. The nucleotide inserted opposite 8-oxoG is dATP. We propose that during DNA damage in S. cerevisiae increased dNTP concentration allows replicative DNA polymerases to bypass certain DNA lesions.  相似文献   

10.
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.  相似文献   

11.
The UmuC/DinB family of bypass polymerases is responsible for translesion DNA synthesis and includes the human polymerases eta, iota, and kappa. We determined the 2.3 A resolution crystal structure of a catalytic fragment of the DinB homolog (Dbh) polymerase from Sulfolobus solfataricus and show that it is nonprocessive and can bypass an abasic site. The structure of the catalytic domain is nearly identical to those of most other polymerase families. Homology modeling suggests that there is minimal contact between protein and DNA, that the nascent base pair binding pocket is quite accessible, and that the enzyme is already in a closed conformation characteristic of ternary polymerase complexes. These observations afford insights into the sources of low fidelity and low processivity of the UmuC/DinB polymerases.  相似文献   

12.
McCulloch SD  Kunkel TA 《DNA Repair》2006,5(11):1373-1383
We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer-templates, and that the polymerase or 3'-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis-syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase-lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts.  相似文献   

13.
Turning off the G2 DNA damage checkpoint   总被引:1,自引:0,他引:1  
  相似文献   

14.
BACKGROUND: In response to genotoxic stress, cells activate checkpoint pathways that lead to a transient cell cycle arrest that allows for DNA repair or to apoptosis, which triggers the demise of genetically damaged cells. RESULTS: During positional cloning of the C. elegans rad-5 DNA damage checkpoint gene, we found, surprisingly, that rad-5(mn159) is allelic with clk-2(qm37), a mutant previously implicated in regulation of biological rhythms and life span. However, clk-2(qm37) is the only C. elegans clock mutant that is defective for the DNA damage checkpoint. We show that rad-5/clk-2 acts in a pathway that partially overlaps with the conserved C. elegans mrt-2/S. cerevisiae RAD17/S. pombe rad1(+) checkpoint pathway. In addition, rad-5/clk-2 also regulates the S phase replication checkpoint in C. elegans. Positional cloning reveals that the RAD-5/CLK-2 DNA damage checkpoint protein is homologous to S. cerevisiae Tel2p, an essential DNA binding protein that regulates telomere length in yeast. However, the partial loss-of-function C. elegans rad-5(mn159) and clk-2(qm37) checkpoint mutations have little effect on telomere length, and analysis of the partial loss-of-function of S. cerevisiae tel2-1 mutant failed to reveal typical DNA damage checkpoint defects. CONCLUSIONS: Using C. elegans genetics we define the novel DNA damage checkpoint protein RAD-5/CLK-2, which may play a role in oncogenesis. Given that Tel2p has been shown to bind to a variety of nucleic acid structures in vitro, we speculate that the RAD-5/CLK-2 checkpoint protein may act at sites of DNA damage, either as a sensor of DNA damage or to aid in the repair of damaged DNA.  相似文献   

15.
Duzen JM  Walker GC  Sutton MD 《DNA Repair》2004,3(3):301-312
Variants of a pentapeptide sequence (QL[S/F]LF), referred to as the eubacterial clamp-binding motif, appear to be required for certain proteins to bind specifically to the Escherichia coli beta sliding clamp, apparently by making contact with a hydrophobic pocket located at the base of the C-terminal tail of each beta protomer. Although both UmuC (DNA pol V) and the alpha catalytic subunit of DNA polymerase III (pol III) each bear a reasonable match to this motif, which appears to be required for their respective interactions with the clamp, neither UmuD not UmuD' do. As part of an ongoing effort to understand how interactions involving the different E. coli umuDC gene products and components of DNA polymerase III help to coordinate DNA replication with a DNA damage checkpoint control and translesion DNA synthesis (TLS) following DNA damage, we characterized the surfaces on beta important for its interactions with the two forms of the umuD gene product. We also characterized the surface of beta important for its interaction with the alpha catalytic subunit of pol III. Our results indicate that although UmuD, UmuD' and alpha share some common contacts with beta, each also makes unique contacts with the clamp. These findings suggest that differential interactions of UmuD and UmuD' with beta impose a DNA damage-responsive conditionality on how beta interacts with the translesion DNA polymerase UmuC. This is formally analogous to how post-translational modification of the eukaryotic PCNA clamp influences mutagenesis. We discuss the implications of our findings in terms of how E. coli might coordinate the actions of the umuDC gene products with those of pol III, as well as for how organisms in general might manage the actions of their multiple DNA polymerases.  相似文献   

16.
17.
18.
Due to the abnormal vasculature of solid tumors, tumor cell oxygenation can change rapidly with the opening and closing of blood vessels, leading to the activation of both hypoxic response pathways and oxidative stress pathways upon reoxygenation. Here, we report that ataxia telangiectasia mutated-dependent phosphorylation and activation of Chk2 occur in the absence of DNA damage during hypoxia and are maintained during reoxygenation in response to DNA damage. Our studies involving oxidative damage show that Chk2 is required for G2 arrest. Following exposure to both hypoxia and reoxygenation, Chk2-/- cells exhibit an attenuated G2 arrest, increased apoptosis, reduced clonogenic survival, and deficient phosphorylation of downstream targets. These studies indicate that the combination of hypoxia and reoxygenation results in a G2 checkpoint response that is dependent on the tumor suppressor Chk2 and that this checkpoint response is essential for tumor cell adaptation to changes that result from the cycling nature of hypoxia and reoxygenation found in solid tumors.  相似文献   

19.
Error-free lesion bypass and error-prone lesion bypass are important cellular responses to DNA damage during replication, both of which require a DNA polymerase (Pol). To identify lesion bypass DNA polymerases, we have purified human Polκ encoded by the DINB1 gene and examined its response to damaged DNA templates. Here, we show that human Polκ is a novel lesion bypass polymerase in vitro. Purified human Polκ efficiently bypassed a template 8-oxoguanine, incorporating mainly A and less frequently C opposite the lesion. Human Polκ most frequently incorporated A opposite a template abasic site. Efficient further extension required T as the next template base, and was mediated mainly by a one-nucleotide deletion mechanism. Human Polκ was able to bypass an acetylaminofluorene-modified G in DNA, incorporating either C or T, and less efficiently A opposite the lesion. Furthermore, human Polκ effectively bypassed a template (–)-trans-anti-benzo[a]pyrene-N2-dG lesion in an error-free manner by incorporating a C opposite the bulky adduct. In contrast, human Polκ was unable to bypass a template TT dimer or a TT (6-4) photoproduct, two of the major UV lesions. These results suggest that Polκ plays an important role in both error-free and error-prone lesion bypass in humans.  相似文献   

20.
Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined. We show that senescence in human fibroblasts is associated with focal accumulation of gamma-H2AX and phosphorylation of Chk2, known mediators of the ataxia-telangiectasia mutated regulated signalling pathway activated by DNA double-strand breaks. Both these responses increased in cells grown beyond senescence through inactivation of p53 and pRb, indicating that they are driven by continued cell division and not a consequence of senescence. gamma-H2AX (though not Chk2) was shown to associate directly with telomeric DNA. Furthermore, inactivation of Chk2 in human fibroblasts led to a fall in p21(waf1) expression and an extension of proliferative lifespan, consistent with failure to activate p53. Thus, Chk2 forms an essential component of a common pathway signalling cell cycle arrest in response to both telomere erosion and DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号