首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monosaccharide transporter (MST) genes of Lupinus polyphyllus and L. albus were cloned, expressed and characterised. The isolation and functional characterisation of a cDNA clone and its corresponding genomic clone of a sugar transporter from L. polyphyllus (LpSTP1) is reported. Phylogenetic comparison of the nucleic and amino acid sequences showed the highest similarity to the AtSTP1 gene from Arabidopsis thaliana, which encodes a high affinity sugar transporter. The similar topology as well as the substrate specificity and expression pattern of LpSTP1 encoded protein additionally support the high similarity to the AtSTP1 gene product. The 1,590 bp LpSTP1 cDNA clone was heterologously expressed in yeast resulting in a fully functional specific sugar transporter. This transformation restored the viability of a yeast deletion mutant, which is devoid of all intrinsic MSTs and thus unable to take up and grow on hexose-containing media. The LpSTP1 protein is postulated to be a high-affinity MST since it supported growth best on media containing 0.2% hexose. Tissue-specific expression of LaSTP1 in L. albus was assayed by real-time PCR, which revealed that the lupin STP1 is mainly expressed in flower buds, flowers and young leaves. The results suggest that the main role of LaSTP1 is to catalyse monosaccharide import in sink tissues to meet increased carbohydrate demand during plant development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Polyamines are nitrogenous compounds found in all eukaryotic and prokaryotic cells and absolutely essential for cell viability. In plants, they regulate several growth and developmental processes and the levels of polyamines are also correlated with the plant responses to various biotic and abiotic stresses. In plant cells, polyamines are synthesized in plastids and cytosol. This biosynthetic compartmentation indicates that the specific transporters are essential to transport polyamines between the cellular compartments. In the present study, a phylogenetic analysis was used to identify candidate polyamine transporters in rice. A full-length cDNA rice clone AK068055 was heterologously expressed in the Saccharomyces cerevisiae spermidine uptake mutant, agp2∆. Radiological uptake and competitive inhibition studies with putrescine indicated that rice gene encodes a protein that functioned as a spermidine-preferential transporter. In competition experiments with several amino acids at 25-fold higher levels than spermidine, only methionine, asparagine, and glutamine were effective in reducing uptake of spermidine to 60% of control rates. Based on those observations, this rice gene was named polyamine uptake transporter 1 (OsPUT1). Tissue-specific expression of OsPUT1 by semiquantitative RT-PCR showed that the gene was expressed in all tissues except seeds and roots. Transient expression assays in onion epidermal cells and rice protoplasts failed to localize to a cellular compartment. The characterization of the first plant polyamine transporter sets the stage for a systems approach that can be used to build a model to fully define how the biosynthesis, degradation, and transport of polyamines in plants mediate developmental and biotic responses.  相似文献   

3.
Developmental gene families have diversified during land plant evolution. The primary role of YABBY gene family is promoting abaxial fate in model eudicot, Arabidopsis thaliana. However recent results suggest that roles of YABBY genes are not conserved in the angiosperms. In this paper, a rice YABBY gene was isolated, and its expression patterns were analyzed in detail. Sequence characterization and phylogenetic analyses showed the gene is OsYABBY4, which is group-classified into FIL/YAB3 subfamily. Beta-glucuronidase reporter assay and in situ analysis consistently revealed that OsYABBY4 was expressed in the meristems and developing vascular tissue of rice, predominantly in the phloem tissue, suggesting that the function of the rice gene is different from those of its counterparts in eudicots. OsYABBY4 may have been recruited to regulate the development of vasculature in rice. However, transgenic Arabidopsis plants ectopically expressing OsYABBY4 behaved very like those over-expressing FIL or YAB3 with abaxialized lateral organs, suggesting the OsYABBY4 protein domain is conserved with its Arabidopsis counterparts in sequences. Our results also indicate that the functional diversification of OsYABBY4 may be associated with the divergent spatial-temporal expression patterns, and YABBY family members may have preserved different expression regulatory systems and functions during the evolution of different kinds of species.  相似文献   

4.
5.
6.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

7.
Characterization of rice functional monosaccharide transporter,OsMST5   总被引:1,自引:0,他引:1  
cDNA of a monosaccharide transporter in rice, OsMST5 (Oryza sativa monosaccharide transporter 5) was cloned and its sugar transport activity was characterized by heterologous expression analysis. The amino acid sequence and topology were similar to the sequences and topology of other plant monosaccharide transporters. Yeast cells co-expressed with OsMST5 cDNA transported some monosaccharide substrates. The transport rate increased when ethanol as an electron donor was added, so the transporter was an energy-dependent active one. Most of the OsMST5 was expressed in panicles before pollination, indicating that it is associated with pollen development in rice.  相似文献   

8.

Background  

In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis.  相似文献   

9.
Ekrem Dündar  Daniel R. Bush 《Planta》2009,229(5):1047-1056
The Arabidopsis thaliana At2g01170 gene is annotated as a putative gamma amino butyric acid (GABA) permease based on its sequence similarity to a yeast GABA transporting gene (UGA4). A cDNA of At2g01170 was expressed in yeast and analyzed for amino acid transport activity. Both direct measurement of amino acid transport and yeast growth experiments demonstrated that the At2g01170 encoded-protein exhibits transport activity for alanine, arginine, glutamate and lysine, but not for GABA or proline. Significantly, unlike other amino acid transporters described in plants to date, At2g01170 displayed both export and import activity. Based on that observation, it was named bidirectional amino acid transporter 1 (BAT1). Sequence comparisons show BAT1 is not a member of any previously defined amino acid transporter family. It does share, however, several conserved protein domains found in a variety of prokaryotic and eukaryotic amino acid transporters, suggesting membership in an ancient family of transporters. BAT1 is a single copy gene in the Arabidopsis genome, and its mRNA is ubiquitously expressed in all organs. A transposon—GUS gene-trap insert in the BAT1 gene displays GUS localization in the vascular tissues (Dundar in Ann Appl Biol, 2009) suggesting BAT1 may function in amino acid export from the phloem into sink tissues.  相似文献   

10.
The ZRT-and IRT-like proteins (ZIP) comprise a large family of transition metal transporters in plants that have diverse functions to transport zinc, iron, copper, etc. Here, we provided a complete overview of this gene family in rice (Oryza sativa L.). Based on the hidden Markov model and BLAST analysis, a total of 17 ZIP-coding genes were identified and further studied by semi-quantitative RT-PCR analysis. Sequence analysis revealed 17 putative genes distributed randomly on eight chromosomes. Although most of the predicted proteins had typical characteristics of the ZIP protein family, the extent of their sequence similarity varied considerably. The expression patterns of OsZIP1, OsZIP3, and OsZIP4, which encode Zn2+ transporters in rice, were studied in the Zn-efficient and Zn-inefficient rice genotypes (IR8192 and Erjiufeng) by semi-quantitative RT-PCR analysis of roots, shoots, and panicle from the plants grown under Zn deficiency and normal conditions. OsZIP1 was expressed only in the roots and very weakly if at all in the panicles, while the other two genes were expressed in all parts of plants under study. The Zn-deficient conditions up-regulated the expression of OsZIP1, OsZIP3, and OsZIP4 in the roots and that of OsZIP4 in the shoots of both genotypes, indicating that all these genes may participate in rice zinc nutrition. Furthermore, the expression of OsZIP3 and OsZIP4 was found to be much stronger in the roots of IR8192 than those of Erjiufeng, which suggests that these genes may contribute to high Zn efficiency in rice. The expression patterns and the roles of other OsZIPs are also discussed on the basis of the phylogenetic tree of ZIP proteins and RT-PCR analysis of the two rice genotypes with different zinc efficiency.  相似文献   

11.
Laccases have numerous biotechnological applications, among them food processing. The widespread use of laccases has increased the demand for an inexpensive and safe source of recombinant enzyme. We explored the use of a rice-based system for the production of two fungal laccases derived from the ascomycete Melanocarpus albomyces and the basidiomycete Pycnoporus cinnabarinus. High-expression levels of active recombinant laccases were achieved by targeting expression to the endosperm of rice seeds. The laccase cDNAs were fused to a plant-derived signal sequence for targeting to the secretory pathway, and placed under the control of a constitutive seed-specific promoter fused to an intron for enhanced expression. This construct enabled the recovery of on average 0.1-1% of soluble laccase in total soluble proteins (TSP). The highest yields of recombinant laccases obtained in rice seeds were 13 and 39 ppm for riceMaL and ricePycL, respectively. The rice-produced laccases were purified and characterized. The wild-type and the recombinant proteins showed similar biochemical features in terms of molecular mass, pI, temperature and optimal pH and the N-terminus was correctly processed. Although presenting lower kinetic parameters, the rice-produced laccases were also suitable for the oxidative cross-linking of a food model substrate [maize-bran feruloylated arabinoxylans (AX)].  相似文献   

12.
13.
14.
To understand the molecular mechanism of ovule development, a MADS box gene,HoMADS 1, has been isolated from the ovule tissues of Hyacinthus. Sequence comparison showed that HoMADS 1 is highly homologous to both class C and D genes. Furthermore, phylogenetic analysis suggests that HoMADS 1 is most likely a class D MADS box gene. RNA hybridization revealed that HoMADS 1 was exclusively expressed in the ovules. Over-expressing HoMADS 1 in transgenic Arabidopsis plants produced ectopic carpelloid structures, including ovules, indicating that HoMADS 1 is involved in the determination of carpel and ovule identities. Interestingly, during in vitro flowering, no HoMADS 1 mRNA was detected in the floral tissues at high level hormones in the media. However, HoMADS 1 mRNA accumulated in the floral tissues when the regenerated flowers were transferred to the media containing low level hormones which could induce in vitro ovule formation. Our data suggest that the induction of HoMADS 1 by plant hormones may play important roles during ovule initiation and development in the regenerated flower. Whether HoMADS 1 expression is also regulated by cytokinin and auxin during ovule development in planta remains to be investigated.  相似文献   

15.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

16.
17.
18.
We report the cDNA sequence and gene expression patterns of OsMADS22, a novel member of the STMADS11-like family of MADS-box genes, from rice. In contrast to previously reported STMADS11-like genes, whose expression is detected in vegetative tissues, OsMADS22 is mainly expressed during embryogenesis and flower development. In situ hybridization analysis revealed that OsMADS22 expression is localized in the L1 layer of embryos and in developing stamen primordia. Ectopic expression of OsMADS22 in transgenic rice plants resulted in aberrant floral morphogenesis, characterized by a disorganized palea, an elongated glume, and a two-floret spikelet. The results are discussed in terms of rice spikelet development and a novel non-vegetative role for a STMADS11-like gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号