首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J L Vanneste  J Yu    S V Beer 《Journal of bacteriology》1992,174(9):2785-2796
Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic in the control of fire blight, two prototrophic Tn5-induced mutants, 10:12 and 17:12, that had lost their ability to inhibit E. amylovora on plates (Ant- mutants) were compared with the wild-type strain for their ability to suppress fire blight in immature pear fruits. The two mutants had single Tn5 insertions in the chromosome; although they grew in immature pear fruits at a rate similar to that of the wild-type strain, neither of these mutants suppressed fire blight as well as Eh252 did. The Tn5-containing fragment isolated from 10:12 was used to mutagenize Eh252 by marker exchange. Derivatives that acquired the Tn5-containing fragment by homologous recombination lost the ability to inhibit E. amylovora on minimal medium. Furthermore, the three Ant- derivatives tested were also affected in their ability to inhibit E. amylovora in immature pear fruits. The results obtained suggest that antibiotic production is a determinant of the biological control of E. amylovora by Eh252, but that another mechanism(s) is involved.  相似文献   

2.
Erwinia amylovora is a gram-negative phytopathogen that causes fire blight of pome fruit and related members of the family Rosaceae. We sequenced the putative autoinducer-2 (AI-2) synthase gene luxS from E. amylovora. Diversity analysis indicated that this gene is extremely conserved among E. amylovora strains. Quorum sensing mediated by LuxS has been implicated in coordinated gene expression, growth, and virulence in other enterobacteria; however, our evidence suggests this is not the function in E. amylovora. Mutational analysis pointed to a role in colonization of apple blossoms, the primary infection court for fire blight, although little if any role in virulence on apple shoots and pear fruit was observed. Expression of key virulence genes hrpL and dspA/E was reduced in mutants of two E. amylovora strains. Stronger effects on gene expression were observed for metabolic genes involved in the activated methyl cycle with mutants having greater levels of expression. No quorum-sensing effect was observed in coculture experiments with wild-type and mutant strains either in vitro or in apple blossoms. Known receptors essential for AI-2 quorum sensing, the LuxPQ sensor kinase or the Lsr ABC-transporter, are absent in E. amylovora, further suggesting a primarily metabolic role for luxS in this bacterium.  相似文献   

3.
r.k. taylor and c.n. hale. 2003. AIMS: To determine the effect of cold storage on the survival of Erwinia amylovora. METHODS AND RESULTS: The survival of E. amylovora was assessed during storage at 2 degrees C. Populations of E. amylovora inoculated into phosphate-buffered saline remained static, whereas in nutrient media populations increased at low temperatures. In contrast, populations of E. amylovora on tissue in the apple calyx decreased during cold storage. CONCLUSIONS: Erwinia amylovora has the ability, in nutrient media, to multiply at low temperatures. However, populations of E. amylovora on tissue in the apple calyx decrease with the time spent in cold storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Cold storage of apples will provide assurance that mature fruit from orchards, free of fire blight, or even with low levels of fire blight, may be exported with a negligible risk of introducing the disease into countries free of fire blight.  相似文献   

4.
The mechanisms by which Erwinia herbicola inhibits Erwinia amylovora , the fire blight pathogen, were investigated. The optimum pH for growth of Erw. amylovora strain Ea273 in nutrient-yeast extract-glucose broth (NYGB) was 7.0 and growth was markedly reduced at pH values below 6.0. In contrast, the growth rates of Erw. herbicola strains Eh141 and Eh112Y were only slightly reduced at pH levels as low as 4.5, relative to pH 6-8. When Ea273 was grown in NYGB in the presence of Eh141 or Eh112Y, the media became acidic and lower populations of Ea273 were recovered, compared with populations from buffered NYGB. Acidification of plant tissue as a consequence of growth of Erw. herbicola did not occur, however, and thus acid-based inhibition of growth in planta is unlikely. The growth rates of nine strains of Erw. herbicola and their abilities to reduce the pH of NYGB did not correlate with their different abilities to prevent development of fire blight incited by Ea273 in a research apple orchard. When grown in mixed culture, Eh114 and Eh112Y grew to higher populations than Ea273 due to depletion of a nitrogen source needed by Ea273. The ability of 12 strains of Erw. herbicola to produce antibiotics inhibitory to Ea273 on a glucose-asparagine medium correlated with the effectiveness of the strains in suppressing fire blight. A crude preparation of the Eh318 antibiotic delayed development of disease in immature pear fruits incited by Ea273 but not by strain Ea273R318, which is resistant in vitro to the Eh318 antibiotic. Cells of Eh318 protected immature pear fruits more effectively from infection by Ea273 than from the resistant strain Ea273R318.  相似文献   

5.
Erwinia herbicola Eh1087 isolated from apple blossom inhibits development of Erwinia amylovora in immature pear fruit and produces a broad spectrum antibiotic activity in vitro that is bactericidal for Erw. amylovora. The antibiotic activity is present in cell-free culture supernatant fluids of late log-early stationary phase cultures of Eh1087. This antibiotic activity is not inhibited by proteases, excess ferric ions or essential amino acids. It is stable to acidic and basic pH and is inactivated at high temperature. The antibiotic activity is inactivated by β-lactamase digestion.  相似文献   

6.
Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.  相似文献   

7.
Detection and identification of the fire blight pathogen, Erwinia amylovora, can be accurately done by polymerase chain reaction (PCR) analysis in less than 6 h. Two oligomers derived from a 29-kb plasmid which is common to all strains of E. amylovora were used to amplify a 0.9-kb fragment of the plasmid. By separation of the PCR products on agarose gel, this fragment wa specifically detected when E. amylovora DNA was present in the amplification assay. It was not found when DNA from other plant-pathogenic bacteria was used for the assay. A visible band specific to the 0.9-kb fragment was produced with DNA from fewer than 100 E. amylovora cells. A signal of similar strength was also obtained from E. amylovora cell lysates in the presence of the mild detergent Tween 20. Signals were weaker when bacteria were added to the PCR mixture without the detergent. As with results obtained from hybridization experiments using pEA29 DNA< the PCR signal was obtained with E. amylovora isolates from various geographic regions. This technique could also be used for detection of the fire blight pathogen in extracts of tissue obtained from infected plant material.  相似文献   

8.
In order to find reasons for the absence of fire blight in most countries of the Southern hemisphere, bark samples from apple and pear trees in orchards of the Western Cape region in South Africa were extracted for bacteria which could be antagonistic to Erwinia amylovora. Screening was done in the late growth season and mainly Gram-positive bacteria were isolated. Approximately half of them produced growth inhibition zones on a lawn of E. amylovora. Most isolates were classified as Bacillus megaterium by microbiological assays and in API 50 test systems. They were visualized in the light microscope as non-motile large rods. These strains may not be responsible for the absence of fire blight in orchards, but they may indicate unfavourable climatic conditions for Gram-negative bacteria including E. amylovora. They may reduce the ability of E. amylovora to establish fire blight and could also be useful for application in biological disease control.  相似文献   

9.
Erwinia amylovora is the causative agent of fire blight, a serious disease of some Rosaceae plants. The newly isolated bacteriophage PhiEaH2 is able to lyse E. amylovora in the laboratory and has reduced the occurrence of fire blight cases in field experiments. This study presents the sequenced complete genome and analysis of phage PhiEaH2.  相似文献   

10.
Bogs J  Geider K 《Journal of bacteriology》2000,182(19):5351-5358
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.  相似文献   

11.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages phiEa1 and phiEa7 and 3 novel phages named phiEa100, phiEa125, and phiEa116C, were identified based on differences in genome size and restriction fragment pattern. phiEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages phiEa100, phiEa7, and phiEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. phiEa116C contained an approximately 75-kb genome. phiEa1, phiEa7, phiEa100, phiEa125, and phiEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. phiEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 10(5) CFU.  相似文献   

12.
Erwinia amylovora is the causal agent of fire blight, a disease affecting members of subfamily Maloideae. In order to analyze mechanisms leading to compatible or incompatible interactions, early plant molecular events were investigated in two genotypes of Malus with contrasting susceptibility to fire blight, after confrontation with either E. amylovora or the incompatible tobacco pathogen Pseudomonas syringae pv. tabaci. Many defense mechanisms, including generation of an oxidative burst and accumulation of pathogenesis-related proteins, were elicited in both resistant and susceptible genotypes by the two pathogens at similar rates and according to an equivalent time course. This elicitation was linked with the functional hypersensitive reaction and pathogenicity (hrp) cluster of E. amylovora, because an hrp secretion mutant did not induce such responses. However, a delayed induction of several genes of various branch pathways of the phenylpropanoid metabolism was recorded in tissues of the susceptible genotype challenged with the wild-type strain of E. amylovora, whereas these genes were quickly induced in every other plant-bacteria interaction, including interactions with the hrp secretion mutant. This suggests the existence of hrp-independent elicitors of defense in the fire blight pathogen as well as hrp-dependant mechanisms of suppression of these nonspecific inductions.  相似文献   

13.
A protease with a molecular mass of 48 kDa is secreted by the fire blight pathogen Erwinia amylovora in minimal medium. We characterized this activity as a metalloprotease, since the enzyme was inhibited by EDTA and o -phenanthroline. A gene cluster was determined to encode four genes connected to protease expression, including a structural gene (prtA) and three genes (prtD, prtE, prtF) for secretion of the protease, which are transcribed in the same direction. The organization of the protease gene cluster in E. amylovora is different from that in other Gram-negative bacteria, such as Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. On the basis of the conservative motif of metalloproteases, PrtA was identified to be a member of the metzincin subfamily of zinc-binding metalloproteases, and was confirmed to be the 48 kDa protease on gels by sequencing of tryptic peptide fragments derived from the protein. The protease is apparently secreted into the external medium through the type I secretion pathway via PrtD, PrtE and PrtF which share more than 90% identity with the secretion apparatus for lipase of S. marcescens. A protease mutant was created by Tn 5 -insertions, and the mutation localized in the prtD gene. The lack of protease reduced colonization of an E. amylovora secretion mutant labelled with the gene for the green fluorescent protein (gfp) in the parenchyma of apple leaves.  相似文献   

14.
Detection and identification of the fire blight pathogen, Erwinia amylovora, can be accurately done by polymerase chain reaction (PCR) analysis in less than 6 h. Two oligomers derived from a 29-kb plasmid which is common to all strains of E. amylovora were used to amplify a 0.9-kb fragment of the plasmid. By separation of the PCR products on agarose gel, this fragment wa specifically detected when E. amylovora DNA was present in the amplification assay. It was not found when DNA from other plant-pathogenic bacteria was used for the assay. A visible band specific to the 0.9-kb fragment was produced with DNA from fewer than 100 E. amylovora cells. A signal of similar strength was also obtained from E. amylovora cell lysates in the presence of the mild detergent Tween 20. Signals were weaker when bacteria were added to the PCR mixture without the detergent. As with results obtained from hybridization experiments using pEA29 DNA< the PCR signal was obtained with E. amylovora isolates from various geographic regions. This technique could also be used for detection of the fire blight pathogen in extracts of tissue obtained from infected plant material.  相似文献   

15.
Mutants of Erwinia herbicola Eh1087 (Ant), which did not produce antibiotic activity against Erwinia amylovora, the fire blight pathogen, were selected after TnphoA mutagenesis. In immature pear fruit Ant mutants grew at the same rate as wild-type strain Eh1087 but did not suppress development of the disease caused by E. amylovora. These results indicated that antibiosis plays an important role in the suppression of disease by strain Eh1087. All of the Ant mutations obtained were located in a 2.2-kb region on a 200-kb indigenous plasmid. Sequence analysis of the mutated DNA region resulted in identification of six open reading frames, designated ORF1 through ORF6, four of which were essential to antibiotic expression. One gene was identified as a gene which encodes a translocase protein which is probably involved in antibiotic secretion. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasmid proteins produced in Escherichia coli minicells confirmed the presence of proteins whose sizes corresponded to the sizes of the predicted open reading frame products.  相似文献   

16.
The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant.  相似文献   

17.
The disease-specific (dsp) gene dspA/E of Erwinia amylovora encodes an essential pathogenicity effector of 198 kDa, which is critical to the development of the devastating plant disease fire blight. A yeast two-hybrid assay and in vitro protein pull-down assay demonstrated that DspA/E interacts physically and specifically with four similar putative leucine-rich repeat (LRR) receptor-like serine/threonine kinases (RLK) from apple, an important host of E. amylovora. The genes encoding these four DspA/E-interacting proteins of Malus xdomestica (DIPM1 to 4) are conserved in all genera of hosts of E. amylovora tested. They also are conserved in all cultivars of apple tested that range in susceptibility to fire blight from highly susceptible to highly resistant. The four DIPMs have been characterized, and they are expressed constitutively in host plants. In silico analysis indicated that the DIPMs have similar sequence structure and resemble LRR RLKs from other organisms. Evidence is presented for direct physical interaction between DspA/E and the apple proteins encoded by the four identified clones, which may act as susceptibility factors and be essential to disease development. Knowledge of DIPMs and the interaction with DspA/E thus may facilitate understanding of fire blight development and lead to new approaches to control of disease.  相似文献   

18.
Erwinia amylovora is a phytopathogenic bacterium that causes fire blight, an economically important disease of Rosaceae . Several isolates from pears and apples with fire blight symptoms from Belarus were identified as E. amylovora . All tested isolates were yellow and mucoid on MM2Cu medium, positive in levan production and showed pathogenicity in immature pear fruits. These isolates have identical total protein patterns with E. amylovora 1/79. The PCR with specific primers for E. amylovora harpin gene also gave positive results.  相似文献   

19.
Erwinia amylovora , the causal agent of fire blight, is an enterobacterial pathogen of Rosaceous plants including apple and pear. We have been studying the response of E. amylovora to oxidative stress because, during infection, the bacterium elicits an oxidative burst response in host plants. During the screening of a transposon mutant library for hydrogen peroxide sensitivity, we identified a mutant carrying an insertion in waaL , a gene involved in lipopolysaccharide biosynthesis, that was more sensitive to hydrogen peroxide than the parental wild-type strain. We also confirmed that a waaL mutant of Pseudomonas aeruginosa exhibited an increased sensitivity to hydrogen peroxide compared with the wild-type strain. The E. amylovora waaL mutant was also reduced in virulence, showed a decrease in twitching motility, and was more sensitive to polymyxin B than the wild type. Each of these phenotypes was complemented by the cloned waaL gene. Our results highlight the importance of the lipopolysaccharide layer to virulence in E. amylovora and the unexpected finding of an additional function of lipopolysaccharide in protection from oxidative stress in E. amylovora and P. aeruginosa .  相似文献   

20.
Plant microbiomes have important roles in plant health and productivity. However, despite flowers being directly linked to reproductive outcomes, little is known about the microbiomes of flowers and their potential interaction with pathogen infection. Here, we investigated the temporal spatial dynamics of the apple stigma microbiome when challenged with a phytopathogen Erwinia amylovora, the causal agent of fire blight disease. We profiled the microbiome from the stigmas of individual flowers, greatly increasing the resolution at which we can characterize shifts in the composition of the microbiome. Individual flowers harbored unique microbiomes at the operational taxonomic unit level. However, taxonomic analysis of community succession showed a population gradually dominated by bacteria within the families Enterobacteriaceae and Pseudomonadaceae. Flowers inoculated with E. amylovora established large populations of the phytopathogen, with pathogen-specific gene counts of >3.0 × 107 in 90% of the flowers. Yet, only 42% of inoculated flowers later developed fire blight symptoms. This reveals that pathogen abundance on the stigma is not sufficient to predict disease outcome. Our data demonstrate that apple flowers represent an excellent model in which to characterize how plant microbiomes establish, develop, and correlate with biological processes such as disease progression in an experimentally tractable plant organ.Subject terms: Microbial ecology, Non-coding RNAs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号