首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photomotility behavior in green flagellate algae is mediated by rhodopsin-like receptors, which was initially suggested on the basis of physiological evidence. The cascade of rapid Ca(2+)-dependent electrical responses in the plasma membrane plays a key role in the signal transduction chain during both phototaxis and the photophobic response. The photoreceptor current through the plasma membrane is the earliest detectable event upon photoexcitation of the photoreceptors. Analysis of this current revealed that it consists of at least two components with different characteristics. Genes encoding two archaeal-type rhodopsins (type I rhodopsins) were recently identified in the genome of Chlamydomonas reinhardtii and named (Chlamydomonas Sensory Rhodopsins A and B CSRA and CSRB). The measurements of photoelectric and motor responses in genetic transformants of C. reinhardtii enriched in each of these receptor proteins showed that the two components of the photoreceptor current are mediated by the two rhodopsins, and that both CSRA and CSRB are involved in phototaxis and the photophobic response. The CSRA-mediated current dominates at high light intensities and contributes primarily to the photophobic response. The CSRB-initiated transduction involves an efficient amplification cascade and mediates the highly sensitive phototaxis at low light intensities. CSRA and CSRB expressed heterologously in oocytes of Xenopus laevis act as light-gated proton channels, although it is unclear whether this channel activity plays a functional role in the initiation of motor responses and/or occurs in the native system.  相似文献   

2.
3.
4.
5.
Photoexcitation of rhodopsin in Chlamydomonas reinhardtii triggers a complex of rapid bioelectric processes in the cell membrane. Photoreceptor and flagellar currents are the major components of this cascade and are the basis for the phototaxis and photoshock response, respectively. Desensitization and dark recovery of the extracellularly recorded photoreceptor current were investigated in double-flash excitation experiments. The data obtained show that the desensitization is determined by membrane depolarization rather than by rhodopsin bleaching. At external K+ concentrations less than 0.6 mM, generation of the flagellar current triggers a transient, depolarization-activated K+ efflux that contributes to membrane repolarization after light excitation. Acceleration of the dark recovery at 5 to 10 mM Ca2+ can be partially attributed to a blockade of K+ influx, which is triggered at higher external K+ concentrations. K+ currents constitute a novel component of the rhodopsin-mediated signaling system in C. reinhardtii that is involved in the process of dark adaptation of the system.  相似文献   

6.
Reconstitution of the photoelectric responses involved in photosensory transduction in "blind" cells of Chlamydomonas reinhardtii carotenoid-deficient mutants was studied by means of a recently developed population method. Both the photoreceptor current and the regenerative response can be restored by addition of all-trans-retinal, 9-demethyl-retinal, or dimethyl-octatrienal, while the retinal analogs prevented from 13-cis/trans isomerization, 13-demethyl-retinal and citral, are not effective. Fluence dependence, spectral sensitivity, and effect of hydroxylamine treatment on retinal-induced photoelectric responses are similar to those found earlier in green strains of Chlamydomonas, although an alternative mechanism of antenna directivity in white cells of reconstituted "blind" mutants (likely based on the focusing effect of the transparent cell bodies) leads to the reversed sign of phototaxis in mutant cells under the same conditions. The results obtained indicate that both photoreceptor current and regenerative response are initiated by the same or similar rhodopsins with arhaebacterial-like chromophore(s) and prove directly the earlier suggested identity of the photoreceptor pigment(s) involved in photomotile and photoelectric responses in flagellated algae.  相似文献   

7.
The use of Chlamydomonas reinhardtii as a model system has been hindered by difficulties encountered in expressing foreign genes. We have synthesised a gene encoding green fluorescent protein (GFP) adapted to the codon usage of C. reinhardtii (cgfp). After verifying the gene was functional in Escherichia coli, the cgfp was fused in frame to the phleomycin resistance gene ble from Streptoalloteichus hindustanus and expressed in C. reinhardtii under control of the rbcS2 promoter and intron sequences. The GFP-fluorescence was seen only in the nucleus demonstrating the nuclear accumulation of the Ble-GFP fusion protein. The cgfp was also fused to the chlamyopsin gene, cop, and expressed in C. reinhardtii under control of the cop promoter. The eyespot became fluorescent indicating that the opsin-GFP fusion protein was correctly directed into the eyespot along with the endogenous unmodified opsin. We conclude that cgfp provides a useful tool to visualize protein synthesis and localisation in vivo in C. reinhardtii and possibly in related green algal species.  相似文献   

8.
Microalgae are a diverse group of eukaryotic photosynthetic microorganisms. While microalgae play a crucial role in global carbon fixation and oxygen evolution, these organisms have recently gained much attention for their potential role in biotechnological and industrial applications, such as the production of biofuels. We investigated the potential of the microalga Chlamydomonas reinhardtii to be a platform for the production of human therapeutic proteins. C. reinhardtii is a unicellular freshwater green alga that has served as a popular model alga for physiological, molecular, biochemical and genetic studies. As such, the molecular toolkit for this microorganism is highly developed, including well-established methods for genetic transformation and recombinant gene expression. We transformed the chloroplast genome of C. reinhardtii with seven unrelated genes encoding for current or potential human therapeutic proteins and found that four of these genes supported protein accumulation to levels that are sufficient for commercial production. Furthermore, the algal-produced proteins were bioactive. Thus, the microalga C. reinhardtii has the potential to be a robust platform for human therapeutic protein production.  相似文献   

9.
随着能源危机问题日益严重,可再生能源的研究渐渐成为目前研究的热点.微藻生物能源又以众多的优点成为目前可再生能源的研究重点.我们发现,在减氮培养下的莱茵衣藻,其油脂含量增加,Limp77基因的表达量明显下降.Limp77基因编码的是一类CCCH型锌指蛋白,具有通过与DNA、RNA结合来实现转录的调控或通过调控其它基因转录的锌指蛋白来实现转录调控的功能,极可能参与到莱茵衣藻油脂代谢调控中.通过利用RNAi干涉技术构建Limp77基因的干涉载体,并通过玻璃珠法转入莱茵衣藻(Chlamydomonas reinhardtii)2A38中,研究其与油脂相关的生理生化指标的变化.实验结果表明,Limp 77基因明显抑制莱茵衣藻油脂的积累.  相似文献   

10.
Cryopreservation provides a convenient method for long term storage of living organisms. Current protocols allow the successful cryopreservation of a wide range of algae, although many strains remain recalcitrant to cryopreservation. Chlamydomonas reinhardtii , a species utilized in many molecular and biochemical studies, survives cryopreservation best at low cell density. We show that reduced viability at higher cell densities is caused by the accumulation of a substance released from C. reinhardtii into the culture medium during cryopreservation. A mutant strain of C. reinhardtii (cw10) with a greatly reduced cell wall did not release a substance inhibitory to wild type or cw10 C. reinhardtii during cryopreservation, and could be cryopreserved with the same viability regardless of cell density. The inhibitory substance is small (mw<1300), polar, heat-stable and organic. Chlamydomonas moewusii Gerloff and Chlamydomonas zebra Korschikov ex Pascher both produce substances that reduce the viability of cryopreserved C. reinhardtii . However, neither is affected by the inhibitory substance produced by themselves or C. rienhardtii. Pandorina morum (Müller) Bory and Volvox carteri f. nagariensis Iyengar are colonial Volvocalean algae related to C. reinhardtii that cannot be successfully cryopreserved. They both generate substances that inhibit C. reinhardtii during cryopreservation. The identification of the substance inhibitory to C. reinhardtii during cryopreservation should explain why this alga cryopreserves best at a low cell density, and may lead to protocols that facilitate the more successful cryopreservation of C. reinhardtii and related algae.  相似文献   

11.
Chen HC  Melis A 《Planta》2004,220(2):198-210
Recent work [H.-C. Chen et al. (2003) Planta 218:98-106] reported on the genomic, proteomic, phylogenetic and evolutionary aspects of a putative nuclear gene ( SulP) encoding a chloroplast sulfate permease in the model green alga Chlamydomonas reinhardtii. In this article, evidence is provided for the envelope localization of the SulP protein and its function in the uptake and assimilation of sulfate by the chloroplast. Localization of the SulP protein in the chloroplast envelope was concluded upon isolation of C. reinhardtii chloroplasts, followed by fractionation into envelope and thylakoid membranes and Western blotting of these fractions with specific polyclonal antibodies raised against the recombinant SulP protein. The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the photosystem-II D1 reaction-center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in C. reinhardtii is discussed along with its impact on the repair of photosystem-II from a frequently occurring photo-oxidative damage and potential use for the elucidation of the H(2)-evolution-related metabolism in this green alga.  相似文献   

12.
Chlamydomonas reinhardtii Dangeard generates photoreceptor currents (PCs) upon light excitation. These currents play a key role in the signal transduction chain for photomotility responses. We have previously found that inhibition of PCs by tryptone occurs only in gametes that display chemotaxis toward this agent, and is not observed in chemotactically insensitive vegetative cells. Here we show that the sensitivity to tryptone is characteristic of gametes of both mating types, and examine the influence of gamete mating on PCs and their sensitivity to tryptone. The amplitude of PCs increases after cell fusion, but the sensitivity of these currents to tryptone decreases upon flagellar adhesion and/or an increase in the intracellular cAMP concentration. Net chemotaxis toward tryptone is reduced in young zygotes compared to gametes. We conclude that gamete mating leads to rapid inactivation of a gamete-specific chemosensory system.  相似文献   

13.
Husic HD  Marcus CA 《Plant physiology》1994,105(1):133-139
A carbonic anhydrase (CA)-directed photoaffinity reagent, 125I-labeled p-aminomethylbenzenesulfonamide-4-azidosalicylamide,was synthesized and shown to derivatize periplasmic CA in the unicellular green alga Chlamydomonas reinhardtii. The photoderivatization of purified C. reinhardtii periplasmic CA or intact C. reinhardtii cells with the reagent resulted in the modification of the large (37 kD) subunit of the enzyme. Photoderivatization of proteins in lysed C. reinhardtii cells also resulted in the specific labeling of a polypeptide of 30 kD. Centrifugation of the cell extract prior to photoaffinity labeling revealed that the labeled peptide was present predominantly in a particulate fraction. The photoaffinity-labeled 30-kD polypeptide was not observed in extracts from a mutant of C. reinhardtii that is believed to be deficient in an intracellular form of CA. These results provide evidence that the 30-kD polypeptide, which is photoaffinity labeled in lysed C. reinhardtii cells, is an intracellular form of CA.  相似文献   

14.
Phosphatidylethanolamine, but not phosphatidylcholine, is found in Chlamydomonas reinhardtii. A cDNA coding for diacylglycerol: CDP-ethanolamine ethanolaminephosphotransferase (EPT) was cloned from C. reinhardtii. The C. reinhardtii EPT appears phylogenetically more similar to mammalian aminoalcoholphosphotransferases than to those of yeast and the least close to those of plants. Similar membrane topography was found between the C. reinhardtii EPT and the aminoalcoholphosphotransferases from mammals, yeast, and plants. A yeast mutant deficient in both cholinephosphotransferase and ethanolaminephosphotransferase was complemented by the C. reinhardtii EPT gene. Enzymatic assays of C. reinhardtii EPT from the complemented yeast microsomes demonstrated that the C. reinhardtii EPT synthesized both PC and PE in the transformed yeast. The addition of either unlabeled CDP-ethanolamine or CDP-choline to reactions reduced incorporation of radiolabeled CDP-choline and radiolabeled CDP-ethanolamine into phosphatidylcholine and phosphatidylethanolamine. EPT activity from the transformed yeast or C. reinhardtii cells was inhibited nearly identically by unlabeled CDP-choline, CDP-ethanolamine, and CMP when [14C]CDP-choline was used as the primary substrate, but differentially by unlabeled CDP-choline and CDP-ethanolamine when [14C]CDP-ethanolamine was the primary substrate. The Km value of the enzyme for CDP-choline was smaller than that for CDP-ethanolamine. This provides evidence that C. reinhardtii EPT, similar to plant aminoalcoholphosphotransferase, is capable of catalyzing the final step of phosphatidylcholine biosynthesis, as well as that of phosphatidylethanolamine in the Kennedy pathway.  相似文献   

15.
16.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

17.
We measured picosecond time-resolved fluorescence of intact Photosystem I complexes from Chlamydomonas reinhardtii and Arabidopsis thaliana. The antenna system of C. reinhardtii contains about 30-60 chlorophylls more than that of A. thaliana, but lacks the so-called red chlorophylls, chlorophylls that absorb at longer wavelength than the primary electron donor. In C. reinhardtii, the main lifetimes of excitation trapping are about 27 and 68 ps. The overall lifetime of C. reinhardtii is considerably shorter than in A. thaliana. We conclude that the amount and energies of the red chlorophylls have a larger effect on excitation trapping time in Photosystem I than the antenna size.  相似文献   

18.
Matsuo T  Ishiura M 《FEBS letters》2011,585(10):1495-1502
The genome of the unicellular green alga Chlamydomonas reinhardtii has both plant-like and animal-like genes. It is of interest to know which types of clock genes this alga has. Recent forward and reverse genetic studies have revealed that its clock has both plant-like and algal clock components. In addition, since C. reinhardtii is a useful model organism also called "green yeast", the identification of clock genes will make C. reinhardtii a powerful model for studying the molecular basis of the eukaryotic circadian clock. In this review, we describe our forward genetic approach in C. reinhardtii and discuss some recent findings about its circadian clock.  相似文献   

19.
We have constructed a physical and gene map for the chloroplast DNA (cpDNA) of the unicellular green alga Chlamydomonas gelatinosa, a close relative of Chlamydomonas reinhardtii. At 285 kb, the C. gelatinosa cpDNA is 89 kb larger than its C. reinhardtii counterpart. The alterations in the order of 77 genes on the cpDNAs of these green algae are attributable to nine inversions and one event of expansion/contraction of the inverted repeat. These rearrangements are much more extensive than those previously reported between the cpDNAs of the closely related Chlamydomonas moewusii and Chlamydomonas pitschmannii. Because the divergence level of the C. gelatinosa and C. reinhardtii chloroplast-encoded large subunit rRNA gene sequences is equivalent to that of the corresponding C. moewusii and C. pitschmannii sequences, our results may suggest that, in the same period of time, there have been more numerous rearrangements in the lineage comprising C. gelatinosa and C. reinhardtii than in the lineage comprising C. moewusii and C. pitschmannii. Alternatively, given that substitution rates in chloroplast genes are not necessarily uniform across lineages, the extensive rearrangements between the C. gelatinosa and C. reinhardtii cpDNAs may reflect a longer divergence period for this pair of Chlamydomonas species compared to that for the C. moewusii/C. pitschmannii pair. We have also found that, like its C. reinhardtii homologue but unlike its C. moewusii and C. pitschmannii counterparts, the C. gelatinosa cpDNA features a large number of dispersed repeated sequences that are readily detectable by Southern blot hybridization with homologous fragment probes. Assuming that the two pairs of closely related Chlamydomonas species diverged at about the same time, these data suggest that the susceptibility of Chlamydomonas cpDNAs to rearrangements is correlated with the abundance of repeated sequences. Preliminary characterization of a 345-bp C. gelatinosa cpDNA region containing a repeated sequence by both DNA sequencing and Southern blot analysis has revealed no sequence homology between this region and the cpDNAs of C. reinhardtii and other Chlamydomonas species.   相似文献   

20.
We have isolated a cDNA clone for the Chlamydomonas reinhardtii pre-apoplastocyanin. The sequence contains codons for the complete pre-protein including a two-domain, lumen-targeting transit sequence and the mature apoprotein. The transit sequence (47 amino acids) is the shortest one described for chloroplast lumenal proteins, and like other C. reinhardtii lumen-targeting transit sequences appears to lack an uncharged amino-terminal domain usually present in plant lumen-directing sequences. The mature protein is deduced to be 98 amino acids in length and shows highest primary sequence similarity (74-76% identity) to other unicellular algal plastocyanins. Southern hybridization analysis of C. reinhardtii genomic DNA indicates the presence of a single nuclear gene, as is the case for all other plastocyanin genes characterized to date, although the algal gene might be interrupted. Codon usage in this gene reflects the high GC content of C. reinhardtii nuclear DNA, but is more highly biased than that found in the C. reinhardtii copper-repressible gene for the functionally equivalent pre-apocytochrome c552 (perhaps contributing to the more efficient synthesis in vivo of plastocyanin over cytochrome c552). The deduced physical properties of this plastocyanin are compared to those of the C. reinhardtii plastidic cytochrome c552.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号