首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sphingosine-1-phosphate (S1P), a serum-borne lipid mediator, was demonstrated to be a potent chemoattractant of endothelial cells. It was recently shown that the colocalization of cortactin and actin related protein 2/3 (Arp2/3) in the lamellipodia is critical to S1P-induced endothelial chemotaxis. In this report, we describe that S1P-stimulated cortactin translocation to the cell periphery to form lamellipodia is specifically mediated by the endothelial S1P1 G-protein coupled receptor, and is regulated by Gi-mediated Akt-dependent S1P1 receptor phosphorylation and Cdc42/Rac activation pathways. In contrast to Src-dependent fibroblast growth factor-induced cortactin translocation, tyrosine phosphorylation cascades are not required for S1P-mediated lamellipodia formation and chemotaxis. Furthermore, we also demonstrate that S1P signaling, via the Gi/Akt/S1P1 phosphorylation/Rac pathway, regulates the cortactin–Arp2/3 complex formation, which ultimately results in membrane ruffling, formation of the lamellipodia and endothelial migration.J.F. Lee and H. Ozaki contributed equally to this work  相似文献   

3.
The G protein-coupled receptors S1P2/Edg5 and S1P3/Edg3 both mediate sphingosine-1-phosphate (S1P) stimulation of Rho, yet S1P2 but not S1P3 mediates downregulation of Rac activation, membrane ruffling, and cell migration in response to chemoattractants. Specific inhibition of endogenous Galpha12 and Galpha13, but not of Galphaq, by expression of respective C-terminal peptides abolished S1P2-mediated inhibition of Rac, membrane ruffling, and migration, as well as stimulation of Rho and stress fiber formation. Fusion receptors comprising S1P2 and either Galpha12 or Galpha13, but not Galphaq, mediated S1P stimulation of Rho and also inhibition of Rac and migration. Overexpression of Galphai, by contrast, specifically antagonized S1P2-mediated inhibition of Rac and migration. The S1P2 actions were mimicked by expression of V14Rho and were abolished by C3 toxin and N19Rho, but not Rho kinase inhibitors. In contrast to S1P2, S1P3 mediated S1P-directed, pertussis toxin-sensitive chemotaxis and Rac activation despite concurrent stimulation of Rho via G12/13. Upon inactivation of Gi by pertussis toxin, S1P3 mediated inhibition of Rac and migration just like S1P2. These results indicate that integration of counteracting signals from the Gi- and the G12/13-Rho pathways directs either positive or negative regulation of Rac, and thus cell migration, upon activation of a single S1P receptor isoform.  相似文献   

4.
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.  相似文献   

5.
Previous work has suggested a role for phosphatidylinositide 3′-kinase (PI3-kinase) in platelet-derived growth factor (PDGF)-induced actin reorganization and chemotaxis. In support of this notion, we show in this report that the PI3-kinase inhibitor wortmannin inhibits chemotaxis of PDGF β-receptor expressing porcine aortic endothelial (PAE/PDGFR-β) cells. Treatment with wortmannin resulted in a dose-dependent decrease in chemotaxis with an IC50value of about 15–20 nM.Higher concentrations of wortmannin also reduced basal random migration of transfected cells in the absence of PDGF. We also investigated the role of Rac in PDGF-induced actin reorganization and cell motility. Overexpression of wt Rac in PAE/PDGFR-β cells led to an increased cell motility and edge ruffling in response to PDGF-BB, compared to control cells. In PAE/PDGFR-β cells transfected with inducible V12Rac (a constitutively active Rac mutant), membrane ruffling occurred in the absence of PDGF stimulation and was independent of PI3-kinase activity. On the other hand, PAE/PDGFR-β cells transfected with inducible N17Rac (a dominant negative Rac mutant) failed to show membrane ruffling in response to PDGF stimulation. Together with previous observations, these data indicate that activation of PI3-kinase is crucial for initiation of PDGF-induced cell motility responses and that Rac has a major role downstream of PI3-kinase, in this pathway.  相似文献   

6.
Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-kinase [2-5]. Pten has also been implicated in controlling cell migration [6], but the exact mechanism is not very clear. Using the isogenic Pten(+/+) and Pten(-/-) mouse fibroblast lines, here we show that Pten deficiency led to increased cell motility. Reintroducing the wild-type Pten, but not the catalytically inactive Pten C124S or lipid-phosphatase-deficient Pten G129E mutant, reduced the enhanced cell motility of Pten-deficient cells. Moreover, phosphorylation of the focal adhesion kinase p125(FAK) was not changed in Pten(-/-) cells. Instead, significant increases in the endogenous activities of Rac1 and Cdc42, two small GTPases involved in regulating the actin cytoskeleton [7], were observed in Pten(-/-) cells. Overexpression of dominant-negative mutant forms of Rac1 and Cdc42 reversed the cell migration phenotype of Pten(-/-) cells. Thus, our studies suggest that Pten negatively controls cell motility through its lipid phosphatase activity by down-regulating Rac1 and Cdc42.  相似文献   

7.
The lamellipodium, an essential structure for cell migration, plays an important role in the invasion and metastasis of cancer cells. Although Rac1 recognized as a key player in the formation of lamellipodia, the molecular mechanisms underlying lamellipodial motility are not fully understood. Optogenetic technology enabled us to spatiotemporally control the activity of photoactivatable Rac1 (PA-Rac1) in living cells. Using this system, we revealed the role of phosphatidylinositol 3-kinase (PI3K) in Rac1-dependent lamellipodial motility in PC-3 prostate cancer cells. Through local blue laser irradiation of PA-Rac1-expressing cells, lamellipodial motility was reversibly induced. First, outward extension of a lamellipodium parallel to the substratum was observed. The extended lamellipodium then showed ruffling activity at the periphery. Notably, PI(3,4,5)P3 and WAVE2 were localized in the extending lamellipodium in a PI3K-dependent manner. We confirmed that the inhibition of PI3K activity greatly suppressed lamellipodial extension, while the ruffling activity was less affected. These results suggest that Rac1-induced lamellipodial motility consists of two distinct activities, PI3K-dependent outward extension and PI3K-independent ruffling.  相似文献   

8.
P21-activated kinase 1 (PAK1) is activated by binding to GTP-bound Rho GTPases Cdc42 and Rac via its CRIB domain. Here, we provide evidence that S79 in the CRIB domain of PAK1 is not directly involved in this binding but is crucial for PAK1 activation. S79A mutation reduces the binding affinity of PAK1 for the GTPases and inhibits autophosphorylation and kinase activity of PAK1. Thus, this mutation abrogates the ability of PAK1 to induce changes in cell morphology and motility and to promote malignant transformation of prostate epithelial cells. We also show that growth of the prostate cancer cell line PC3 is inhibited by the treatment of a PAK1-inhibiting peptide comprising 19 amino acids centered on S79, but not by the PAK1 peptide containing the S79A mutation, and that this growth inhibition is correlated with reduced autophosphorylation activity of PAK1. Together, these findings demonstrate a significant role of S79 in PAK1 activation and provide evidence for a novel mechanism of the CRIB-mediated interaction of PAK1 with Cdc42 and Rac.  相似文献   

9.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

10.
A Role for Cdc42 in Macrophage Chemotaxis   总被引:26,自引:0,他引:26       下载免费PDF全文
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)–induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1–induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.

We conclude that Rho and Rac are required for the process of cell migration, whereas Cdc42 is required for cells to respond to a gradient of CSF-1 but is not essential for cell locomotion.

  相似文献   

11.
The biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear. Recent data demonstrate the presence of EDG2 and EDG4 mRNA for LPA receptor in a murine hepatocyte cell line transformed with human TGF-alpha, and in primary mouse hepatocytes. EDG2 receptor protein is expressed in mouse liver, where it appears to be located in nonparenchymal cells. Moreover, we have obtained data suggesting that proliferation of small hepatocyte-progenitors and stem (oval) cells during liver injury is associated with the expression of EDG2 and EDG4 receptors. LPA, and possibly S1P, appear to be essential factors that control proliferation and motility of hepatic stellate cells (HSC) and hepatoma cells. It is proposed that LPA, S1P and their respective EDG receptors play important roles in pathophysiology of chronic liver injury and fibrogenesis. The underlying mechanisms recruited by LPA and S1P in pathogenesis of liver injury remain to be investigated.  相似文献   

12.
One of the striking activities of the Edg family sphingosine-1-phosphate (S1P) receptors includes receptor isotype-specific, bimodal regulatory activity on cell migration. While Edg1 and Edg3 act as typical chemotactic receptors, Edg5 uniquely acts as a chemorepellant receptor. Consistent with this, Edg1 and Edg3, and Edg5 regulate the activity of the Rho family GTPase Rac positively and negatively, respectively. Thus, Edg isotype-specific, differential regulatory activities on Rac seem to be important as mechanisms underlying the bimodal regulation of cell migration by S1P. Edg5-mediated Rac inhibition involves stimulation of Rac-GTPase-activating protein (GAP) activity, rather than inhibition of Rac-guanine nucleotide exchange factor (GEF) activity. Many cell types including vascular smooth muscle and endothelial cells express more than a single S1P receptor isotype. In these cells, it appears that an integration of the Edg isotype-selective, positive and negative signals on cellular Rac activity is a critical determinant for eventual direction of regulation on cell motility by S1P. Physiological and pathological roles for the repulsive activity of Edg5 receptor remain to be clarified.  相似文献   

13.
Several studies have clearly established the importance of the interaction between macrophages and CX3CL1 in the progression of disease. A previous study demonstrated that Syk was required for CX3CL1-mediated actin polymerization and chemotaxis. Here, we delineated the signaling cascade of Syk-mediated cell migration in response to CX3CL1. Inhibition of Syk in bone marrow-derived macrophages or reduction of Syk expression using siRNA in RAW/LR5 cells indicated that Syk was required for the activation of PI3K, Cdc42, and Rac1. Also, reduction in WASP or WAVE2 levels, common downstream effectors of Cdc42 or Rac1, resulted in impaired cell migration to CX3CL1. Syk indirectly regulated WASP tyrosine phosphorylation through Cdc42 activation. Altogether, our data identify that Syk mediated chemotaxis toward CX3CL1 by regulating both Rac1/WAVE2 and Cdc42/WASP pathways, whereas Src family kinases were required for proper WASP tyrosine phosphorylation.  相似文献   

14.
AGR16/H218/EDG5 and EDG1 are functional receptors for lysosphingolipids, whereas EDG2 and EGD4 are receptors for lysophosphatidic acid (LPA). The present study demonstrates that EDG3, the yet poorly defined member of the EDG family G protein-coupled receptors, shows identical agonist specificity, but distinct signaling characteristics, compared to AGR16 and EDG1. Overexpression of EDG3 conferred a specific [32P]S1P binding, which was displaced by S1P and sphingosylphosphorylcholine (SPC), but not by LPA or other related lipids. In cells overexpressing EDG3, S1P induced inositol phosphate production and [Ca2+]i increase in a manner only partially sensitive to pertussis toxin (PTX), which was similar to the case of AGR16, but quite different from the case of EDG1, in which the S1P-induced responses were totally abolished by PTX. EDG3 also mediated activation of mitogen-activated protein kinase (MAPK) in PTX-sensitive and Ras-dependent manners, as in the cases of EDG1 and AGR16, although EDG3 and EDG1 were more effectively coupled to activation of MAPK, compared to AGR16. Additionally, EDG3 mediated a decrease in cellular cyclic AMP content, like EDG1, but contrasting with AGR16 which mediated an increase in cyclic AMP. These and previous results establish that EDG1, AGR16 and EDG3 comprise the lysosphingolipid receptor subfamily, each showing distinct signaling characteristics.  相似文献   

15.
Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/-) macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/-) macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.  相似文献   

16.
Cell migration towards a chemotactic stimulus relies on the re-arrangement of the cytoskeleton, which is triggered by activation of small G proteins RhoA, Rac1 and Cdc42, and leads to formation of lamellopodia and actin polymerisation amongst other effects. Here we show that Rac1 is important for CXCR4 induced chemotaxis but not for CCR1/CCR5 induced chemotaxis. For CXCL12-induced migration via CXCR4, breast cancer MCF-7 cells are reliant on Rac1, similarly to THP-1 monocytes and Jurkat T-cells. For CCL3-induced migration via CCR1 and/or CCR5, Rac1 signalling does not regulate cell migration in either suspension or adherent cells. We have confirmed the involvement of Rac1 with the use of a specific Rac1 blocking peptide. We also used a Rac1 inhibitor EHT 1864 and a Rac1-GEF inhibitor NSC23766 to probe the importance of Rac1 in chemotaxis. Both inhibitors did not block CCL3-induced chemotaxis, but they were able to block CXCL12-induced chemotaxis. This confirms that Rac1 activation is not essential for CCL3-induced migration, however NSC23766 might have secondary effects on CXCR4. This small molecule exhibits agonistic features in internalisation and cAMP assays, whereas it acts as an antagonist for CXCR4 in migration and calcium release assays. Our findings strongly suggest that Rac1 activation is not necessary for CCL3 signalling, and reveal that NSC23766 could be a novel CXCR4 receptor ligand.  相似文献   

17.
The mammalian target of rapamycin (mTOR) functions in cells at least as two complexes, mTORC1 and mTORC2. Intensive studies have focused on the roles of mTOR in the regulation of cell proliferation, growth, and survival. Recently we found that rapamycin inhibits type I insulin-like growth factor (IGF-1)-stimulated lamellipodia formation and cell motility, indicating involvement of mTOR in regulating cell motility. This study was set to further elucidate the underlying mechanism. Here we show that rapamycin inhibited protein synthesis and activities of small GTPases (RhoA, Cdc42, and Rac1), crucial regulatory proteins for cell migration. Disruption of mTORC1 or mTORC2 by down-regulation of raptor or rictor, respectively, inhibited the activities of these proteins. However, only disruption of mTORC1 mimicked the effect of rapamycin, inhibiting their protein expression. Ectopic expression of rapamycin-resistant and constitutively active S6K1 partially prevented rapamycin inhibition of RhoA, Rac1, and Cdc42 expression, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or down-regulation of S6K1 by RNA interference suppressed expression of the GTPases, suggesting that both mTORC1-mediated S6K1 and 4E-BP1 pathways are involved in protein synthesis of the GTPases. Expression of constitutively active RhoA, but not Cdc42 and Rac1, conferred resistance to rapamycin inhibition of IGF-1-stimulated lamellipodia formation and cell migration. The results suggest that rapamycin inhibits cell motility at least in part by down-regulation of RhoA protein expression and activity through mTORC1-mediated S6K1 and 4E-BP1-signaling pathways.  相似文献   

18.
The bioactive lipid sphingosine 1-phosphate (S1P) is known to exert powerful biological effects through the interaction with various members of the endothelial differentiation gene (EDG) receptor family, recently renamed S1P receptors. In the present study, evidence is provided that differentiation of C2C12 myoblasts into myotubes was accompanied by profound changes of EDG/S1P receptor expression. Indeed, in differentiated cells a significant increase of EDG3/S1P3 together with a large decrease of EDG5/S1P2 expression at mRNA as well as protein level was detected. Moreover, S1P was capable to initiate the signalling pathways downstream to cytosolic Ca(2+) increase in myotubes, similarly to that observed in myoblasts, whereas the signalling of the bioactive lipid to phospholipase D (PLD), but not that of bradykinin (BK) or lysophosphatidic acid (LPA), was found impaired in differentiated cells. Intriguingly, overexpression of EDG5/S1P2, but not EDG1/S1P1 or EDG3/S1P3, potentiated the efficacy of S1P to stimulate PLD, strongly suggesting a role for EDG5/S1P2 in the signalling to PLD. This view was also supported by the marked reduction of S1P-induced PLD activity in myoblasts loaded with antisense oligodeoxyribonucleotides (ODN) to EDG5/S1P2. Furthermore, overexpression of EDG5/S1P2 rescued the coupling of S1P signalling to PLD in C2C12 myotubes. Experimental evidence here provided supports the notion that EDG5/S1P2 plays a dominant role in the coupling of S1P to PLD in myoblasts and that the down-regulation of the receptor subtype is responsible for the specific uncoupling of S1P signalling to PLD in myotubes.  相似文献   

19.
Growth factors promote cell survival and cell motility, presumably through the activation of Akt and the Rac and Cdc42 GTPases, respectively. Because Akt is dispensable for Rac/Cdc42 regulation of actin reorganization, it has been assumed that Rac and Cdc42 stimulate cell motility independent of Akt in mammalian cells. However, in this study we demonstrate that Akt is essential for Rac/Cdc42-regulated cell motility in mammalian fibroblasts. A dominant-negative Akt inhibits cell motility stimulated by Rac/Cdc42 or by PDGF treatment, without affecting ruffling membrane-type actin reorganization. We have confirmed a previous report that Akt is activated by expression of Rac and Cdc42 and also observed colocalization of endogenous phosphorylated Akt with Rac and Cdc42 at the leading edge of fibroblasts. Importantly, expression of active Akt but not the closely related kinase SGK is sufficient for increasing cell motility. This effect of Akt is cell autonomous and not mediated by inhibition of GSK3. Finally, we found that dominant-negative Akt but not SGK reverses the increased cell motility phenotype of fibroblasts lacking the PTEN tumor suppressor gene. Taken together, these results suggest that Akt promotes cell motility downstream of Rac/Cdc42 in growth factor-stimulated cells and in invasive PTEN-deficient cells.  相似文献   

20.
Rho-like GTPases control a wide range of cellular functions such as integrin- and cadherin-mediated adhesion, cell motility, and gene expression. The hypervariable C-terminal domain of these GTPases has been implicated in membrane association and effector binding. We found that cell-permeable peptides, encoding the C termini of Rac1, Rac2, RhoA, and Cdc42, interfere with GTPase signaling in a specific fashion in a variety of cellular models. Pull-down assays showed that the C terminus of Rac1 does not associate to either RhoGDI or to Pak. In contrast, the C terminus of Rac1 (but not Rac2 or Cdc42) binds to phosphatidylinositol 4,5-phosphate kinase (PIP5K) via amino acids 185-187 (RKR). Moreover, Rac1 associates to the adapter protein Crk via the N-terminal Src homology 3 (SH3) domain of Crk and the proline-rich stretch in the Rac1 C terminus. These differential interactions mediate Rac1 localization, as well as Rac1 signaling, toward membrane ruffling, cell-cell adhesion, and migration. These data show that the C-terminal, hypervariable domain of Rac1 encodes two distinct binding motifs for signaling proteins and regulates intracellular targeting and differential signaling in a unique and non-redundant fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号