共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
副突变是一种表观遗传现象,通过同源基因间染色质状态信息的转移建立新的基因表达状态,这种表达状态能够通过减数分裂而传递到后代。玉米是研究副突变及其机制的模式植物,目前已经发现有5个基因位点能够发生副突变。对玉米b1副突变系统的广泛研究发现DNA重复序列、siRNA途径、DNA结合蛋白等在副突变状态的建立和维持过程中可能起着重要的作用。 相似文献
3.
4.
5.
Defining the molecular mechanisms of human cell immortalization. 总被引:31,自引:0,他引:31
Although the immortalization of human cells is a key step in oncogenic progression, the molecular mechanisms underlying this event are poorly understood. After reviewing the use of chemicals, physical agents, oncogenes and DNA tumor viruses as immortalizing agents, we consider the importance of negative regulators of cell growth (RB and p53), their inactivation, as well as genomic instability in the pathogenesis of cancer. Finally, a molecular model for human cell immortalization that integrates many of the above observations is presented along with supporting evidence. 相似文献
6.
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1alpha (SDF-1alpha), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL. 相似文献
7.
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1α (SDF-1α), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL. 相似文献
8.
现在关于高糖高脂对胰腺β细胞的毒性机制已经有了明显的进展,但还不完全清楚。实际上,β细胞响应过量营养物质的过程是一个连续的过程,包括β细胞补偿和β细胞功能失调。在早期,β细胞应对高糖高脂的反应是一个积极主动的过程;而到后期,过量的糖脂会导致胰岛素分泌下降,削弱胰岛素基因表达量,并促进胰岛β细胞凋亡。最终对2型糖尿病的发展有促进作用。综述了近年来细胞水平和分子水平,在葡萄糖存在的条件下,脂肪酸对胰腺β细胞的损伤作用及其机制的研究进展,重在说明葡萄糖和脂肪酸在2型糖尿病发展中的共同作用。 相似文献
9.
P Mitchell 《Journal of theoretical biology》1976,62(2):327-367
The object of this paper is to help to evolve a conceptual framework suitable for exploring and explaining the mechanisms of protonmotive cytochrome systems.A review of some of the knowledge of the kinetic and equilibrium behaviour of the classical cytochrome systems of mitochondria indicates that the simple redox loop concept is not adequate for building a realistic conceptual model. In particular, the remarkable behaviour of the components of the cytochrome b-c1 complex, which has long been regarded as puzzling, cannot be explained on the basis of simple redox loop formulations. However, the newly introduced concepts of the protonmotive ubiquinone cycle, or Q cycle, and of the cyclic loop 2–3 system, which represent developments of the redox loop concept, are shown to provide a promising basis for the evolution of a satisfactory theory.The mechanism of the Q cycle is discussed and developed in the light of experimental knowledge of classical mitochondrial cytochrome systems. The possible operation of a Q cycle in chloroplasts and bacteria is briefly discussed, and attention is drawn to bacterial cytochrome systems that appear to be organized as simple redox loops rather than as cyclic systems.Some aspects of notions of direct chemiosmotic coupling and indirect conformational coupling are compared in the context of research strategy. 相似文献
10.
11.
12.
目的:研究塞来昔布对前列腺癌DU-145细胞凋亡及侵袭力的影响,并探讨其可能作用机制.方法:应用Hoechst 33342/PI染色检测细胞凋亡形态;Annexin V-FITC/PI双染色流式细胞术检测不同浓度塞来昔布诱导细胞凋亡能力;RT-PCR法检测塞来昔布作用后Bcl-2、E-cadherin、ICE及COX-2 mRNA表达水平的变化.结果:Hoechst 33342/PI双染色可观察到药物作用后.细胞呈现明显凋亡现象.流式细胞术证实塞来昔布能有效诱导细胞凋亡,0、25、50、100、200μmol/L塞来昔布诱导细胞凋亡率分别为(1.10±0.15)%,(3.87±0.79)%,(10.59±1.58)%,(22.50±3.30)%,(33.85±2.71)%,细胞凋亡率呈现浓度依赖性递增.RT-PCR显示Bcl-2mRNA表达水平下调,E-cadherin mRNA表达水平上调,ICE mRNA表达水平无明显变化,COX-2 mRNA未检测到.结论:塞采昔布能有效诱导前列腺癌DU-145细胞凋亡并使其侵袭力降低. 相似文献
13.
14.
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling. 相似文献
15.
Carlos F. Ibáñez 《Biochemical and biophysical research communications》2010,396(1):24-40630
The text book view of cell surface receptors depicts them at the top of a vertical chain of command that starts with ligand binding and proceeds in a lineal fashion towards the cell nucleus. Although pedagogically useful, this view is incomplete and recent findings suggest that the extracellular domain of cell surface receptors can be a transmitter as much as a receiver in intercellular communication. GFRα1 is a GPI-anchored receptor for GDNF (glial cell line-derived neurotrophic factor), a neuronal growth factor with widespread functions in the developing and adult nervous system. GFRα1 partners with transmembrane proteins, such as the receptor tyrosine kinase RET or the cell adhesion molecule NCAM, for intracellular transmission of the GDNF signal. In addition to this canonical role, GFRα1 can also engage in horizontal interactions and thereby modify the function of other cell surface components. GFRα1 can also function as a ligand-induced adhesion cell molecule, mediating homophilic cell-cell interactions in response to GDNF. Finally, GFRα1 can also be released from the cell surface and act at a distance as a soluble factor together with its ligand. This plethora of unconventional mechanisms is likely to be a feature common to several other receptors and considerably expands our view of cell surface receptor function. 相似文献
16.
Summary. Adrenomedullin (AM) is a potent, long-lasting vasoactive peptide originally isolated from human pheochromocytoma. Since its discovery, serum and tissue AM expression have been shown to be increased in experimental models and in patients with cardiac hypertrophy, myocardial infarction and end-stage heart failure with several beneficial effects. Considerable evidence exists for a wide range of autocrine, paracrine and endocrine mechanisms for AM which include vasodilatory, anti-apoptotic, angiogenic, anti-fibrotic, natriuretic, diuretic and positive inotropic. Thus, through regulation of body fluid or direct cardiac mechanisms, AM has additive and beneficial effects in the context of heart disease. Notable molecular mechanisms of AM include cyclic adenosine monophosphate, guanosine-3′,5′-monophosphate, PI3K/Akt and MAPK-ERK-mediated cascades. Given the endogenous and multifunctional nature of AM, we consider this molecule to have great potential in the treatment of cardiovascular diseases. In agreement, early experimental and preliminary clinical studies suggest that AM is a new and promising therapy for cardiovascular diseases. 相似文献
17.
18.
Every cell or neuronal type utilizes its own specific organization of its Ca(2+) homeostasis depending on its specific function and its physiological needs. The magnocellular neurones, with their somata situated in the supraoptic and paraventricular nuclei of the hypothalamus and their nerve terminals populating the posterior hypophysis (neural lobe) are a typical and classical example of a neuroendocrine system, and an important experimental model for attempting to understand the characteristics of the neuronal organization of Ca(2+) homeostasis. The magnocellular neurones synthesize, in a cell specific manner, two neurohormones: arginine-vasopressin (AVP) and oxytocin (OT), which can be released, in a strict Ca(2+)-dependent manner, both at the axonal terminals, in the neural lobe, and at the somatodendritic level. The two types of neurones show also distinct type of bioelectrical activity, associated with specific secretory patterns. In these neurones, the Ca(2+) homeostatic pathways such as the Na(+)/Ca(2+) exchanger (NCX), the endoplasmic reticulum (ER) Ca(2+) pump, the plasmalemmal Ca(2+) pump (PMCA) and the mitochondria are acting in a complementary fashion in clearing Ca(2+) loads that follow neuronal stimulation. The somatodendritic AVP and OT release closely correlates with intracellular Ca(2+) dynamics. More importantly, the ER Ca(2+) stores play a major role in Ca(2+) homeostatic mechanism in identified OT neurones. The balance between the Ca(2+) homeostatic systems that are in the supraoptic neurones differ from those active in the terminals, in which mainly Ca(2+) extrusion through the Ca(2+) pump in the plasma membrane and uptake by mitochondria are active. In both AVP and OT nerve terminals, no functional ER Ca(2+) stores can be evidenced experimentally. We conclude that the physiological significance of the complexity of Ca(2+) homeostatic mechanisms in the somatodendritic region of supraoptic neurones and their terminals can be multifaceted, attributable, in major part, to their specialized electrical activity and Ca(2+)-dependent neurohormone release. 相似文献
19.
In the developing nervous system, individual neurons must occupy appropriate positions within circuits. This requires that these neurons recognize and form connections with specific pre- and postsynaptic partners. Cellular recognition is also required for the spacing of cell bodies and the arborization of dendrites, factors that determine the inputs onto a given neuron. These issues are particularly evident in the retina, where different types of neurons are evenly spaced relative to other cells of the same type. This establishes a reiterated columnar circuitry resembling the insect retina. Establishing these mosaic patterns requires that cells of a given type (homotypic cells) be able to sense their neighbors. Therefore, both synaptic specificity and mosaic spacing require cellular identifiers. In synaptic specificity, recognition often occurs between different types of cells in a pre- and postsynaptic pairing. In mosaic spacing, recognition is often occurring between different cells of the same type, orhomotypic self-recognition. Dendritic arborization can require recognition of different neurites of the same cell, or isoneuronal self-recognition. The retina is an extremely amenable system for studying the molecular identifiers that drive these various forms of recognition. The different neuronal types in the retina are well defined, and the genetic tools for marking cell types are increasingly available. In this review we will summarize retinal anatomy and describe cell types in the retina and how they are defined. We will then describe the requirements of a recognition code and discuss newly emerging candidate molecular mechanisms for recognition that may meet these requirements. 相似文献
20.
Apoptosis: molecular mechanisms in programmed cell death. 总被引:28,自引:0,他引:28