首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xanthomonas campestris pathovar campestris is the causal agent of black rot disease of cruciferous plants. A cell-cell signalling system encoded by genes within the rpf cluster is required for the full virulence of this plant pathogen. This system has recently been implicated in regulation of the formation and dispersal of Xanthomonas biofilms.  相似文献   

2.
Biofilm formation and dispersal and the transmission of human pathogens   总被引:18,自引:0,他引:18  
Several pathogenic bacterial species that are found in the environment can form complex multicellular structures on surfaces known as biofilms. Pseudomonas aeruginosa, Vibrio cholerae and certain species of nontuberculous mycobacteria are examples of human pathogens that form biofilms in natural aquatic environments. We suggest that the dynamics of biofilm formation facilitates the transmission of pathogens by providing a stable protective environment and acting as a nidus for the dissemination of large numbers of microorganisms; both as detached biofilm clumps and by the fluid-driven dispersal of biofilm clusters along surfaces. We also suggest that emerging evidence indicates that biofilm formation conveys a selective advantage to certain pathogens by increasing their ability to persist under diverse environmental conditions.  相似文献   

3.
Polystyrene petri dishes containing liquid medium were inoculated with single-cell suspensions of a fresh clinical isolate of Neisseria subflava and were incubated under conditions of low vibration. N. subflava colonies grew firmly attached to the surface of the dish, while the broth remained clear. Growing colonies released cells into the medium, resulting in the appearance of 10(2) to 10(4) small satellite colonies attached to the surface of the dish in an area adjacent to each mature colony after 24 h. Satellite colonies grew in patterns of streamers shaped like jets and flares emanating from mature colonies and pointing toward the center of the dish. This dispersal pattern evidently resulted from the surface translocation of detached biofilm cells by buoyancy-driven convection currents that were generated due to slight temperature gradients in the medium. Streamers of satellite colonies ranged from 2 to >40 mm in length. Satellite colonies in very long streamers were relatively uniform in size regardless of their distance from the mature colony, suggesting that mature colonies released single cells or small clusters of cells into the medium and that the detachment, surface translocation, and subsequent surface reattachment of released cells were a transitory process. Incubation of N. subflava single cells in a perfused biofilm fermentor resulted in a large spike of the number of CFU in the perfusate after 9.5 h of growth, consistent with a rapid release of cells into the medium. Biofilm colonies of several other phylogenetically diverse oral bacteria, including Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Streptococcus mitis, and a prevalent but previously uncultured oral Streptococcus sp., exhibited similar temperature-dependent dispersal patterns in broth culture. This in vitro spreading phenotype could be a useful tool for studying biofilm dispersal in these and other nonflagellated bacteria and may have physiological relevance to biofilm dispersal in the oral cavity.  相似文献   

4.
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self‐produced extracellular matrix. Although a biofilm is commonly described as a “cozy house” where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm‐dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.  相似文献   

5.
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.  相似文献   

6.
Membrane transitions in Gram-positive bacteria   总被引:5,自引:0,他引:5  
  相似文献   

7.
In Gram-positive bacteria proteins are displayed on the cell surface using sortase enzymes. These cysteine transpeptidases join proteins bearing an appropriate sorting signal to strategically positioned amino groups on the cell surface. Working alone, or in concert with other enzymes, sortases either attach proteins to the cross-bridge peptide of the cell wall or they link proteins together to form pili. Because surface proteins play a fundamental role in microbial physiology and are frequently virulence factors, sortase enzymes have been intensely studied since their discovery a little more than a decade ago. Based on their primary sequences and functions sortases can be partitioned into distinct families called class A to F enzymes. Most bacteria elaborate their surfaces using more than one type of sortase that function non-redundantly by recognizing unique sorting signals within their protein substrates. Here we review what is known about the functions of these enzymes and the molecular basis of catalysis. Particular emphasis is placed on 'pilin' specific class C sortases that construct structurally complex pili. Exciting new data have revealed that these enzymes are amazingly promiscuous in the substrates that they can employ and that there is a startling degree of diversity in their mechanism of action. We also review recent data that suggest that sortases are targeted to specific sites on the cell surface where they work with other sortases and accessory factors to properly function.  相似文献   

8.
Hyaluronidases of Gram-positive bacteria   总被引:5,自引:0,他引:5  
Bacterial hyaluronidases, enzymes capable of breaking down hyaluronate, are produced by a number of pathogenic Gram-positive bacteria that initiate infections at the skin or mucosal surfaces. Since reports of the hyaluronidases first appeared, there have been numerous suggestions as to the role of the enzyme in the disease process. Unlike some of the other more well studied virulence factors, much of the information on the role of hyaluronidase is speculative, with little or no data to substantiate proposed roles. Over the last 5 years, a number of these enzymes from Gram-positive organisms have been cloned, and the nucleotide sequence determined. Phylogenetic analysis, using the deduced amino acid sequences of the Gram-positive hyaluronidases, suggests a relatedness among some of the enzymes. Molecular advances may lead to a more thorough understanding of the role of hyaluronidases in bacterial physiology and pathogenesis.  相似文献   

9.
Bacterial cells are protected by an exoskeleton, the stabilizing and shape-maintaining cell wall, consisting of the complex macromolecule peptidoglycan. In view of its function, it could be assumed that the cell wall is a static structure. In truth, however, it is steadily broken down by peptidoglycan-cleaving enzymes during cell growth. In this process, named cell wall turnover, in one generation up to half of the preexisting peptidoglycan of a bacterial cell is released from the wall. This would result in a massive loss of cell material, if turnover products were not be taken up and recovered. Indeed, in the Gram-negative model organism Escherichia coli, peptidoglycan recovery has been recognized as a complex pathway, named cell wall recycling. It involves about a dozen dedicated recycling enzymes that convey cell wall turnover products to peptidoglycan synthesis or energy pathways. Whether Gram-positive bacteria also recover their cell wall is currently questioned. Given the much larger portion of peptidoglycan in the cell wall of Gram-positive bacteria, however, recovery of the wall material would provide an even greater benefit in these organisms compared to Gram-negatives. Consistently, in many Gram-positives, orthologs of recycling enzymes were identified, indicating that the cell wall may also be recycled in these organisms. This mini-review provides a compilation of information about cell wall turnover and recycling in Gram-positive bacteria during cell growth and division, including recent findings relating to muropeptide recovery in Bacillus subtilis and Clostridium acetobutylicum from our group. Furthermore, the impact of cell wall turnover and recycling on biotechnological processes is discussed.  相似文献   

10.
11.
This is a highlight on the article ‘Extracellular vesicle formation in Lactococcus lactis is stimulated by prophage-encoded holin-lysin system’ by Yue Liu, Eddy Smid and Tjakko Abee.  相似文献   

12.
Efflux-mediated drug resistance in Gram-positive bacteria   总被引:2,自引:0,他引:2  
Gram-positive bacteria express numerous membrane transporters that promote the efflux of various drugs, including many antibiotics, from the cell to the outer medium. Drug transporters can be specific to a particular drug, or can have broad specificity, as in so-called multidrug transporters. This broad specificity can be a consequence of the hydrophobic nature of transported molecules, as suggested by recent structural studies of soluble multidrug-binding proteins. Although the functions of drug transporters may involve both the protection of bacteria from outside toxins and the transport of natural metabolites, their clinical importance lies largely in providing Gram-positive pathogens with resistance to macrolides, tetracyclines and fluoroquinolones. A number of agents, discovered in recent years, that inhibit drug transporters can potentially be used to overcome efflux-associated antibiotic resistance.  相似文献   

13.
14.
AIMS: To investigate the biofilm-forming capacity and the production of quorum signals in Gram-negative bacteria isolated from a food production environment, and the possible correlation between both phenotypes. METHODS AND RESULTS: Sixty-eight Gram-negative bacteria were isolated from equipment and working surfaces in a raw vegetable processing line, and tested for biofilm-forming capacity using an in vitro microplate assay. All isolates showed significantly higher biofilm-forming capacity than Escherichia coli laboratory strain DH5alpha, which was included as a negative control, and differed up to 56-fold in relative biofilm-forming capacity. Various assays based on reporter bacteria were used to detect quorum signals produced by the isolates. Twenty-six isolates produced autoinducer-2, five isolates produced N-acyl-homoserine lactones (AHLs), and none produced the Pseudomonas quinolone signal. CONCLUSIONS: No correlation was found between in vitro biofilm-forming capacity and production of quorum signalling molecules among the 68 strains isolated from the raw vegetable processing line. SIGNIFICANCE AND IMPACT OF THE STUDY: Several recent studies have shown a role of AHL-based quorum sensing in biofilm formation of specific Gram-negative bacterial strains. The current work shows that production of AHL and other quorum signals is not widespread in Gram-negative isolates from a raw vegetable processing line, and is not a general requirement for biofilm formation, at least in vitro.  相似文献   

15.
Infections caused by multiple-resistant Gram-positive organisms continue to occur at an alarming rate worldwide. Two new and unique antimicrobial agents targeted specifically against such organisms, quinupristin/dalfopristin and linezolid, have been approved for use in the USA in the past year and will play an important role in the treatment of life-threatening infections. In addition, several new fluoroquinolones have been approved recently or will be available in the near future to aid in the treatment of infections caused by resistant strains of Streptococcus pneumoniae.  相似文献   

16.
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.  相似文献   

17.
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.  相似文献   

18.
Cell envelope stress response in Gram-positive bacteria   总被引:1,自引:0,他引:1  
The bacterial cell envelope is the first and major line of defence against threats from the environment. It is an essential and yet vulnerable structure that gives the cell its shape and counteracts the high internal osmotic pressure. It also provides an important sensory interface and molecular sieve, mediating both information flow and the controlled transport of solutes. The cell envelope is also the target for numerous antibiotics. Therefore, the monitoring and maintenance of cell envelope integrity in the presence of envelope perturbating agents and conditions is crucial for survival. The underlying signal transduction is mediated by two regulatory principles, two-component systems and extracytoplasmic function sigma factors, in both the Firmicutes (low-GC) and Actinobacteria (high-GC) branches of Gram-positive bacteria. This study presents a comprehensive overview of cell envelope stress-sensing regulatory systems. This knowledge will then be applied for in-depth comparative genomics analyses to emphasize the distribution and conservation of cell envelope stress-sensing systems. Finally, the cell envelope stress response will be placed in the context of the overall cellular physiology, demonstrating that its regulatory systems are linked not only to other stress responses but also to the overall homeostasis and lifestyle of Gram-positive bacteria.  相似文献   

19.
Mechanisms of nisin resistance in Gram-positive bacteria   总被引:1,自引:0,他引:1  
Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.  相似文献   

20.
The formation of biofilms by diverse bacteria isolated from contaminated soil and groundwater on model substrata with different surface properties was assessed in a multifactorial screen. Diverse attachment phenotypes were observed as measured by crystal violet dye retention and confocal laser scanning microscopy (CLSM). Bulk measurements of cell hydrophobicity had little predictive ability in determining whether biofilms would develop on hydrophobic or hydrophilic substrata. Therefore selected pairs of bacteria from the genera Rhodococcus, Pseudomonas and Sphingomonas that exhibited different attachment phenotypes were examined in more detail using CLSM and the lipophilic dye, Nile Red. The association of Rhodococcus sp. cell membranes with lipids was shown to influence the attachment properties of these cells, but this approach was not informative for Pseudomonas and Sphingomonas sp. Confocal Raman Microspectroscopy of Rhodococcus biofilms confirmed the importance of lipids in their formation and indicated that in Pseudomonas and Sphingomonas biofilms, nucleic acids and proteins, respectively, were important in identifying the differences in attachment phenotypes of the selected strains. Treatment of biofilms with DNase I confirmed a determining role for nucleic acids as predicted for Pseudomonas. This work demonstrates that the attachment phenotypes of microbes from environmental samples to different substrata varies markedly, a diverse range of macromolecules may be involved and that these differ significantly between genera. A combination of CLSM and Raman spectroscopy distinguished between phenotypes and could be used to identify the key macromolecules involved in cell attachment to surfaces for the specific cases studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号