首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Previously we indicated that a specific delay in subunit c degradation causes the accumulation of mitochondrial ATP synthase subunit c in lysosomes from the cells of patients with the late infantile form of neuronal ceroid lipofuscinosis (NCL). To explore the mechanism of lysosomal storage of subunit c in patient cells, we investigated the mechanism of the lysosomal accumulation of subunit c both in cultured normal fibroblasts and in in vitro cell-free incubation experiments. Addition of pepstatin to normal fibroblasts causes the marked lysosomal accumulation of subunit c and less accumulation of Mn2+-superoxide dismutase (SOD). In contrast, E-64-d stimulates greater lysosomal storage of Mn2+-SOD than of subunit c. Incubation of mitochondrial-lysosomal fractions from control and diseased cells at acidic pH leads to a much more rapid degradation of subunit c in control cells than in diseased cells, whereas other mitochondrial proteins, including Mn2+-SOD, β subunit of ATP synthase, and subunit IV of cytochrome oxidase, are degraded at similar rates in both control and patient cells. The proteolysis of subunit c in normal cell extracts is inhibited markedly by pepstatin and weakly by E-64-c, as in the cultured cell experiments. However, there are no differences in the lysosomal protease levels, including the levels of the pepstatin-sensitive aspartic protease cathepsin D between control and patient cells. The stable subunit c in mitochondrial-lysosomal fractions from patient cells is degraded on incubation with mitochondrial-lysosomal fractions from control cells. Exchange experiments using radiolabeled substrates and nonlabeled proteolytic sources from control and patient cells showed that proteolytic dysfunction, rather than structural alterations such as the posttranslational modification of subunit c, is responsible for the specific delay in the degradation of subunit c in the late infantile form of NCL.  相似文献   

2.
The specific accumulation of the hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of neuronal ceroid lipofuscinosis (LINCL) is caused by lysosomal proteolytic dysfunction. The defective gene in LINCL (CLN2 gene) has been identified recently. To elucidate the mechanism of lysosomal storage of subunit c, antibodies against the human CLN2 gene product (Cln2p) were prepared. Immunoblot analysis indicated that Cln2p is a 46-kDa protein in normal control skin fibroblasts and carrier heterozygote cells, whereas it was absent in cells from four patients with LINCL. RT-PCR analysis indicated the presence of mRNA for CLN2 in cells from the four different patients tested, suggesting a low efficiency of translation of mRNA or the production of the unstable translation products in these patient cells. Pulse-chase analysis showed that Cln2p was synthesized as a 67-kDa precursor and processed to a 46-kDa mature protein (t(1/2) = 1 h). Subcellular fractionation analysis indicated that Cln2p is localized with cathepsin B in the high-density lysosomal fractions. Confocal immunomicroscopic analysis also revealed that Cln2p is colocalized with a lysosomal soluble marker, cathepsin D. The immunodepletion of Cln2p from normal fibroblast extracts caused a loss in the degradative capacity of subunit c, but not the beta subunit of ATP synthase, suggesting that the absence of Cln2p provokes the lysosomal accumulation of subunit c.  相似文献   

3.
Immunochemical studies demonstrated the specific accumulation of subunit c of mitochondrial ATP synthase in the brain homogenates of late infantile and juvenile forms of Batten's disease. It is not stored in the infantile form. Storage of subunit alpha of mitochondrial ATP synthase and cytochrome c oxidase subunit IV, an inner membrane protein of mitochondria was not detected in the brains. There was also no difference in the levels of cathepsin B between the two forms of Batten's disease and controls. In cultured skin fibroblasts subunit c accumulates in the late infantile form, whereas it does not in other lysosomal storage diseases. Crude mitochondrial lysosomal preparations of control fibroblasts were separated into high-density fractions rich in a lysosomal marker and low-density fractions rich in a mitochondrial marker on Percoll density gradients. Subunit c was mostly recovered in low-density mitochondrial fractions, but in cells from the late infantile disease a part of subunit c was recovered in the high-density lysosomal fractions. Immunolocalization studies demonstrated a dot-like staining of storage materials for subunit c in the cells from late infantile patients and the staining pattern of subunit c is similar to that of a lysosomal membrane marker, lgp120. Immunostaining failed to detect subunit c in control cells. These results indicate a specific accumulation of subunit c in lysosomes, and suggest that the two forms of Batten's disease are caused by a specific failure in the degradation of subunit c.  相似文献   

4.
Subunit c is normally present as an inner mitochondrial membrane component of the Fo sector of the ATP synthase complex, but in the late infantile form of neuronal ceroid lipofuscinosis (NCL) it was also found in lysosomes in high concentrations. Mechanism for specific accumulation of subunit c in lysosomes is not known. The rate of degradation of subunit c as measured by pulsechase and immunoprecipitation showed a marked delay of degradation in patients fibroblasts with late infantile form of NCL. There were no significant differences between control cells and cells with disease in the degradation of cytochrome oxidase subunit IV, an inner membrane protein of mitochondria. Measurement of labeled subunit c in mitochondrial and lysosomal fractions showed that the accumulation of labeled subunit c in the mitochondrial fraction can be detected before lysosomal appearance of radioactive subunit c, suggesting that subunit c accumulated as a consequence of abnormal catabolism in the mitochondrion and is transferred to lysosomes, through an autophagic process. There were no large differences of various lysosomal protease activities between control and patient cells. In patient cells sucrose loading caused a marked shift of lysosomal density, but did not a shift of subunit c containing storage body. The biosynthetic rate of subunit c and mRNA levels for P1 and P2 genes that code for it were almost the same in both control and patient cells. These findings suggest that a specific failure in the degradation of subunit c after its normal inclusion in mitochondria and its consequent accumulation in lysosomes.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

5.
Activation of proteolysis by ATP was studied in lysates of crude and purified lysosomal preparations from liver and kidney at acid pH. In the crude system, from kidney, it was found that ATP activates proteolysis over a concentration range of 0.1-2 mM. Up to 4-fold activation was observed. GTP and CTP also activated proteolysis, but to a lesser extent. Proteolysis was inhibited by vanadate and molybdate. Fractionation of the kidney lysosomes on Percoll gradients produced two fractions containing lysosomal marker enzymes. Most of the acid phosphatase and the acid pyrophosphatase were found in the lighter band, while most of the beta-galactosidase and cathepsin activity was found in a more dense band. Proteolysis by lysates of both fractions was activated by ATP and inhibited by vanadate and molybdate. In the dense band proteolysis was also nearly totally blocked by pepstatin, and was enhanced by an inhibitor of pyrophosphatases, sodium fluoride. ATP also activates proteolysis in crude lysosomes from liver, but upon fractionation of this tissue it was found that all the lysosomal enzyme markers are present in the dense fraction obtained from the Percoll gradient. Again, proteolysis by lysates of the purified fractions was activated by ATP and inhibited by vanadate and molybdate. These data indicate that ATP can activate proteolysis at acid pH in a lysosomal milieu containing enzymes which also catalyze its breakdown. In the kidney there may be two lysosomal compartments which separate the enzymes catalyzing ATP breakdown from the proteolytic enzymes, but this is not essential for ATP activation as shown by the data from the liver and the crude lysosomal fractions.  相似文献   

6.
A lysosomal pepstatin-insensitive proteinase (CLN2p) deficiency is the underlying defect in the classical late-infantile neuronal ceroid lipofuscinosis (LINCL, CLN2). The natural substrates for CLN2p and the causative factors for the neurodegeneration in this disorder are still not understood. We have now purified the CLN2p from bovine brain to apparent homogeneity. The proteinase has a molecular mass of 46 kDa and an aminoterminal sequence, L-H-L-G-V-T-P-S-V-I-R-K, that is identical to the human enzyme. Peptide: N-glycosidase F and endoglycosidase H treatment of the CLN2p reduced its molecular mass to 39.5 and 40.5 kDa, respectively, suggesting the presence of as many as five N-glycosylated residues. The CLN2p activity was not affected by common protease inhibitors, and thiol reagents, metal chelators, and divalent metal ions had no significant effect on the proteolytic activity of the CLN2p. Among the naturally occurring neuropeptides, angiotensin II, substance P, and beta-amyloid were substrates for the CLN2p, whereas angiotensin I, Leu-enkephalin, and gamma-endorphin were not. Peptide cleavage sites indicated that the CLN2p is a tripeptidyl peptidase that cleaves peptides having free amino-termini. Synthetic amino- and carboxyl-terminal peptides from the subunit c sequence, which is the major storage material in LINCL, are hydrolyzed by the CLN2p, suggesting that the subunit c may be one of the natural substrates for this proteinase and its accumulation in LINCL is the direct result of the proteinase deficiency.  相似文献   

7.
Late-infantile neuronal ceroid lipofuscinosis (CLN2), previously known as the late-infantile form of Batten disease, is a lysosomal storage disease which results from mutations in the gene that codes for tripeptidyl peptidase-I (TPP-I). This disease is characterised by progressive neurodegeneration in young children although the molecular mechanisms responsible for neuronal cell death are unclear. TPP-I is an exopeptidase which removes N-terminal tripeptides from small peptides, including several peptide hormones. We report that the degradation of the neuropeptide, neuromedin B, by mouse brain cells is restricted to lysosomes and that the pattern of degradation products is consistent with a predominant role for TPP-I. Neuromedin B is degraded by a similar pathway in a mouse neuronal cell line and also in cultured human fibroblasts. A specific inhibitor of TPP-I is able to abolish neuromedin B degradation in a variety of cell types. Fibroblasts from CLN2 patients, which are deficient in TPP-I activity, are unable to degrade neuromedin B. These observations suggest that TPP-I is the predominant proteolytic enzyme responsible for the intracellular degradation of neuromedin B. The inability of cells from CLN2 patients to degrade neuromedin B and other neuropeptides may contribute to the pathogenesis of the disease.  相似文献   

8.
The ceroid lipofuscinoses are a group of neurodegenerative lysosomal storage diseases of children and animals that are recessively inherited. In diseased individuals fluorescent storage bodies accumulate in a wide variety of cells, including neurons. Previous studies of these bodies isolated from tissues of affected sheep confirmed that the storage occurs in lysosomes, and showed that the storage body is mostly made of a single protein with an apparent molecular mass of 3500 Da with an N-terminal amino acid sequence that is the same as residues 1-40 of the c-subunit (or dicyclohexylcarbodi-imide-reactive proteolipid) of mitochondrial ATP synthase. In the present work we have shown by direct analysis that the stored protein is identical in sequence with the entire c-subunit of mitochondrial ATP synthase, a very hydrophobic protein of 75 amino acid residues. As far as can be detected by the Edman degradation, the stored protein appears not to have been subject to any post-translational modification other than the correct removal of the mitochondrial import sequences that have been shown in other experiments to be present at the N-terminal of its two different precursors. No other protein accumulates in the storage bodies to any significant extent. Taken with studies of the cDNAs for the c-subunit in normal and diseased sheep, these results indicate that the material that is stored in lysosomes of diseased animals has probably entered mitochondria and has been subjected to the proteolytic processing that is associated with mitochondrial import. This implies that the defect that leads to the lysosomal accumulation concerns the degradative pathway of the c-subunit of ATP synthase. An alternative, but less likely, hypothesis is that for some unknown reason the precursors of subunit c are being directly mis-targeted to lysosomes, where they become processed to yield a protein identical with the protein that is normally found in the mitochondrial ATP synthase assembly, and which then accumulates.  相似文献   

9.
Canine liver lysosomes were purified by sucrose discontinuous density gradient centrifugation and then ruptured by sonication to obtain the soluble fraction. This soluble lysosomal fraction, which contained a 25-fold increase in acid phosphatase activity per mg of total protein when compared with the original homogenate, was incubated with a subfraction (1.110 less than d less than 1.210 g/cm3, HDL3) of canine high density lipoproteins (HDL) at pH 3.8. HDL3 proteolysis by lysosomal proteases, measured as the release of peptides and amino acids by the ninhydrin reaction, followed hyperbolic curves with straight lines (r = 0.99) obtained on Lineweaver-Burk plots. Km calculated from the Lineweaver-Burk plot was 635 mug of HDL3 protein per 0.5 ml of incubation mixture. Optimum HDL3 proteolysis was observed from pH 3.8 to 4.5. Incubation with the other subcellular organelle fractions did not result in HDL3 proteolysis. To evaluate the effects of enzyme inhibitors, iodoacetate, p-chloromercuribenzoate (both specific for the endopeptidase, cathepsin B (EC 3.4.22.1)) and pepstatin (specific for the endopeptidase, cathepsin D (EC 3.4.23.5) were tested. Iodoacetate and p-chloromercuribenzoate inhibited HDL3 proteolysis 100% and bovine serum albumin proteolysis 65%. Pepstatin inhibited HDL3 proteolysis 45% and bovine serum albumin proteolysis 70%. The in vitro data presented support the hypothesis that hepatic lysosomes play an important role in HDL3 catabolism in the dog. Furthermore, results obtained from enzyme inhibition studies suggest that a specific lysosomal endopeptidase, cathepsin B, may play the key role in HDL3 proteolysis.  相似文献   

10.
Previous studies on lipopigment isolated from sheep affected with ceroid lipofuscinosis (Batten's disease) showed that the disease is a lysosomal proteinosis, involving specific storage of peptide(s) that migrate in dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent Mr of 3500. This band is the dominant contributor to the lipopigment mass. When purified total lipopigment proteins were loaded onto a protein sequencer, a dominant sequence was found, identical to the NH2 terminus of the lipid-binding subunit of protein translocating mitochondrial ATP synthase. This sequence was determined to 40 residues and a minimum estimate of 40% made for its contribution to the lipopigment protein mass. The full lipid-binding subunit has physical and chemical properties similar to those of the specifically stored low Mr peptide, which may be the full protein or a large NH2-terminal fragment of it. Lipopigments in the human ceroid lipofuscinoses also contain a major component with similar physical and chemical properties. These and previous results indicate that the genetic lesion in ovine ceroid lipofuscinosis causes an abnormal accumulation of this peptide in lysosomes, i.e. the disease is a proteolipid proteinosis, specifically a lysosomal mitochondrial ATP synthase lipid-binding subunit proteinosis. The analogous human diseases are likely to reflect storage of the same or similar peptides.  相似文献   

11.
Abstract: Subunit c is normally present as an inner mitochondrial membrane component of the F0 section of the ATP synthase complex, but in the late infantile form of neuronal ceroid lipofuscinosis (NCL) it was also found in lysosomes in high concentrations. To explore the mechanism of storage of subunit c, the rates of degradation and synthesis of subunit c were measured in fibroblast cell types from controls and patients with the late infantile form of NCL. The radiolabel from subunit c decreased with time in control cells, whereas no apparent loss of radioactivity of subunit c was found in patients' cells. There were no significant differences between control cells and cells with disease in the degradation of cytochrome oxidase subunit IV, an inner membrane protein of mitochondria. A combination of pulse-chase and subcellular fractionation analysis showed that a delay of intramitochondrial loss from prelabeled subunit c was seen in all diseased cells tested. Lysosomal appearance of labeled subunit c could be detected after chase for more than 1 week and its radioactivities were variable among diseased cell types. The biosynthetic rate of subunit c was almost the same in both control and patient cells. Northern blotting analyses showed that mRNAs for P1 and P2 genes had no significant difference in lengths and amounts between control and patient cells. Results suggest a specific failure in the degradation of subunit c after its normal inclusion in mitochondria and its consequent accumulation in lysosomes. This is the first direct evidence to show a delay of subunit c degradation in the cells from the late infantile form of NCL.  相似文献   

12.
HRP-anti LGP107Fab' and 125I-anti LGP107IgG were used as probes to study the movement of LGP107 in the endocytic membrane transport system in primary cultured hepatocytes of rats. Following the addition of HRP-anti LGP107Fab' to the culture medium, the transfer of the antibody conjugate from the cell surface of lysosomes was examined by cell fractionation on Percoll density gradients. The HRP tracer showed a bimodal subcellular distribution, in plasma membrane and lysosomal fractions. The amount of HRP found in the lysosomal fractions became larger as the period of cell incubation was increased. The rate of HRP accumulation in lysosomes was 0.13% of the administered load per hour per 10(6) cells. When cells were given 125I-anti LGP107 IgG, the antibody was not stored but was rapidly degraded in the lysosomes. The uptake of 125I-IgG by the cells, which was assessed by measuring the TCA-soluble radiolabeled degradation products released into the medium, increased proportionally to the administered concentration of the antibody and to the incubation time. The rate of uptake of the polyvalent 125I-IgG was comparable to that for the uptake of the monovalent HRP-Fab', and remained unchanged even after long exposure of the cells to a saturating concentration of the polyvalent IgG. This uptake process continued for many hours in the cells exposed to the protein synthesis inhibitor, cycloheximide. These results suggest that there is a continuous circulation of LGP107 between the cell surface and lysosomes in hepatocytes.  相似文献   

13.
1. We have investigated the origin of proteolytic activity which causes degradation of histones in chromatin isolated from Xenopus liver and the rat liver at neutral pH. Polyacrylamide disc gel electrophoresis was used for detection of proteolytic products of histones. 2. No proteolytic degradation of histones occurs in chromatin isolated from Xenopus erythrocytes and rat liver according to our procedure even after prolonged incubation at pH 8.0 and pH 5.0. However with chromatin isolated from Xenopus liver a high level of histone degradation is observed under similar conditions. 3. Mixing isolated nuclei from Xenopus erythrocytes with a crude cytoplasmic fraction from Xenopus liver causes histone proteolysis in isolated chromatin at pH 8.0. In similar experiments with corresponding fractions from rat liver histone proteolysis can be introduced only after repeated freezing and thawing of the cytoplasmic fraction. 4. A purified lysosomal preparation from rat liver causes a similar type of histone degradation upon incubation with chromatin from Xenopus erythrocytes and rat liver. 5. The neutral proteolytic activity that can be introduced in isolated chromatin by a crude cytoplasmic fraction and by a purified lysosomal erythrocytes and rat liver. 5. The neutral proteolytic activity that can be introduced in isolated chromatin by a crude cytoplasmic fraction and by a purified lysosomal fraction from rat liver is inhibited by sodium bisulphite. 6. We conclude that the neutral proteolytic activity which causes degradation of histones in isolated chromatin is due to a contamination with neutral protease(s) originating from cytoplasmic organelles.  相似文献   

14.
A method is described for the purification of subunit c of ATP synthase from rat liver mitochondria. After sample preparation and solvent extraction, the protein was purified to homogeneity by a single-step preparative electrophoretic procedure, using aqueous buffer and containing lithium dodecyl sulfate. The subunit is an extremely hydrophobic and insoluble protein and all solubilization attempts, using a variety of detergents, were unsuccessful except for lithium dodecyl sulfate. Buffer exchange and FPLC gel filtration removed the detergent from the purified sample, leaving the protein in a soluble form. The mammalian protein is composed of 75 amino acid residues, with a molecular mass of 7602 Da and is classified as a proteolipid. Subunit c accounts for 25 and 85% of the intralysosomal accumulation, within neurons, of storage material in juvenile and late-infantile forms of Batten's disease, respectively. This purification procedure allows access to a continuous supply of pure subunit c from a conventional source such as rat liver and preserves precious autopsy materials. The protein could be used as substrate in future proteolytic studies involving pepstatin-insensitive lysosomal proteases and for raising of more specific antibodies. The procedure could also be adapted/modified and used as a model for purifying other extremely insoluble proteins.  相似文献   

15.
Most previous studies on inhibitors of lysosomal protein breakdown have been performed on isolated or cultured cells or on perfused organs. We have tested various inhibitors of proteolysis on lysosomes isolated from livers of rats injected with [14C]leucine 15 min (short labeling time) and 16 h (long labeling time) before killing. Intact lysosomes were incubated with different inhibitors (leupeptin, propylamine, E-64, pepstatin, and chloroquine) in increasing concentrations. None of these caused more than a 40-75% inhibition of proteolysis irrespective of labeling protocol. Chloroquine was the most effective inhibitor, followed by leupeptin, propylamine, E-64, and pepstatin. When lysosomes were incubated with various combinations of inhibitors, including a weak base and an enzyme inhibitor, a somewhat higher inhibition (86%) was obtained. To assess if lysosomes are active in the degradation of both short and long lived proteins, lysosomes were isolated from livers of rats labeled with [14C]leucine for various time intervals. The highest fractional proteolytic rates were seen for short lived proteins. If the recovery of the isolated lysosomes is taken into consideration, about 80% (short labeling time) and 90% (long labeling time) of the total proteolysis in the homogenate could be accounted for by lysosomes. Isolated Golgi, mitochondrial, and microsomal fractions displayed negligible proteolytic activities. The cytosol contributed one-fifth of the total protein breakdown of short lived proteins, whereas insignificant proteolysis was recovered in the cytosolic fraction following long time labeling. Accordingly, we propose that 1) lysosomal inhibitors do not completely suppress proteolysis in isolated lysosomes and that 2) both short and long lived proteins are degraded in lysosomes.  相似文献   

16.
Aging (senescence) is characterized by a progressive accumulation of macromolecular damage, supposedly due to a continuous minor oxidative stress associated with mitochondrial respiration. Aging mainly affects long-lived postmitotic cells, such as neurons and cardiac myocytes, which neither divide and dilute damaged structures, nor are replaced by newly differentiated cells. Because of inherent imperfect lysosomal degradation (autophagy) and other self-repair mechanisms, damaged structures (biological "garbage") progressively accumulate within such cells, both extra- and intralysosomally. Defective mitochondria and aggregated proteins are the most typical forms of extralysosomal "garbage", while lipofuscin that forms due to iron-catalyzed oxidation of autophagocytosed or heterophagocytosed material, represents intralysosomal "garbage". Based on findings that autophagy is diminished in lipofuscin-loaded cells and that cellular lipofuscin content positively correlates with oxidative stress and mitochondrial damage, we have proposed the mitochondrial-lysosomal axis theory of aging, according to which mitochondrial turnover progressively declines with age, resulting in decreased ATP production and increased oxidative damage. Due to autophagy of ferruginous material, lysosomes contain a pool of redox-active iron, which makes these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes releases hydrolytic enzymes to the cytosol, eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult), while chelation of the intralysosomal pool of redox-active iron prevents these effects. In relation to the onset of oxidant-induced apoptosis, but after the initiating lysosomal rupture, cytochrome c is released from mitochondria and caspases are activated. Mitochondrial damage follows the release of lysosomal hydrolases, which may act either directly or indirectly, through activation of phospholipases or pro-apoptotic proteins such as Bid. Additional lysosomal rupture seems to be a consequence of a transient oxidative stress of mitochondrial origin that follows the attack by lysosomal hydrolases and/or phospholipases, creating an amplifying loop system.  相似文献   

17.
ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis.  相似文献   

18.
We studied the role of protein kinase C (PKC) in the lysosomal processing of endocytosed proteins in isolated rat hepatocytes. We used [14C]sucrose-labeled horseradish peroxidase ([14C]S-HRP) to simultaneously evaluate endocytosis and lysosomal proteolysis. The PKC activator phorbol 12-myristate 13-acetate (PMA) inhibited the lysosomal degradation of [14C]S-HRP (1 microM PMA: 40% inhibition, P<.05), without affecting either the endocytic uptake or the delivery to lysosomes. However, PMA was not able to affect the lysosomal processing of the beta-galactosidase substrate dextran galactosyl umbelliferone. The PKC inhibitors, chelerytrine (Che), staurosporine (St) and G? 6976, prevented PMA inhibitory effect on lysosomal proteolysis. Nevertheless, purified PKC failed to alter proteolysis in [14C]S-HRP-loaded isolated lysosomes, suggesting that intracellular intermediates are required. PMA induced phosphorylation and hepatocyte membrane-to-lysosome redistribution of the myristoylated alanine-rich C kinase substrate (MARCKS) protein, raising the possibility that MARCKS mediates the PKC-induced inhibition of lysosomal proteolysis.  相似文献   

19.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

20.
Using a combination of differential centrifugation and isopycnic centrifugation in Percoll gradients, we obtained a highly purified preparation of thyroid lysosomes [Alquier, Guenin, Munari-Silem, Audebet & Rousset (1985) Biochem. J. 232, 529-537] in which we identified thyroglobulin. From this observation, we postulated that the isolated lysosome population could be composed of primary lysosomes and of secondary lysosomes resulting from the fusion of lysosomes with thyroglobulin-containing vesicles. In the present study, we have tried to characterize these lysosome populations by (a) subfractionation of purified lysosomes using iterative centrifugation on Percoll gradients and (b) by functional studies on cultured thyroid cells. Thyroglobulin analysed by soluble phase radioimmunoassay, Western blotting or immunoprecipitation was used as a marker of secondary lysosomes. The total lysosome population separated from other cell organelles on a first gradient was centrifuged on a second Percoll gradient. Resedimented lysosomes were recovered as a slightly asymmetrical peak under which the distribution patterns of acid hydrolase activities and immunoreactive thyroglobulin did not superimpose. This lysosomal material (L) was separated into two fractions: a light (thyroglobulin-enriched) fraction (L2) and a dense fraction (L1). L1 and L2 subfractions centrifuged on a third series of Percoll gradients were recovered as symmetrical peaks at buoyant densities of 1.12-1.13 and 1.08 g/ml, respectively. In each case, protein and acid hydrolase activities were superimposable. The specific activity of acid phosphatase was slightly lower in L2 than in L1. In contrast, the immunoassayable thyroglobulin content of L2 was about 4-fold higher than that of L1. The overall polypeptide composition of L, L1 and L2 analysed by polyacrylamide-gel electrophoresis was very similar, except for thyroglobulin which was more abundant in L2 than in either L or L1. The functional relationship between L1 and L2 lysosome subpopulations has been studied in cultured thyroid cells reassociated into follicles. Thyroid cells, prelabelled with 125I-iodide to generate 125I-thyroglobulin, were incubated in the absence of in the presence of inhibitors of intralysosomal proteolysis. The fate of 125I-thyroglobulin, and especially its appearance in the lysosomal compartment, was studied by Percoll gradient fractionation and immunoprecipitation. Treatment of prelabelled thyroid cells with chloroquine and leupeptin induced the accumulation of immunoprecipitable 125I-thyroglobulin into a lysosome fraction corresponding to the L2 subpopulation. In control cells, in which intralysosomal proteolysis was n  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号