首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Denervated frog sartorius muscles showed an approximately 2–3 fold increase of cyclic GMP in their end-plate rich regions which did not appear up to 5 weeks after denervation in the normally end-plate-free pelvic region. No increase in cyclic AMP was seen in these preparations. The results suggest that the increase of cyclic GMP is related to processes specific to the region in which end plates are normally present.  相似文献   

2.
Organophosphate poisoning with malathion caused large increases (up to 125 and 440%, respectively) in the level of cyclic GMP in larvae of Mamestra configurata Wlk. and in the fly Sarcophaga bullata Parker. Cyclic AMP was little affected. The malathion-induced increase in cyclic GMP was time and dose dependent. Time-course studies with the head and thorax of S. bullata demonstrated that the increase in cyclic GMP level occurred precipitously after a lag period of about 1 h, during which time the activity of acetylcholinesterase (EC 3.1.1.7) was progressively inhibited. The abrupt increase in cyclic GMP began when acetylcholinesterase activity had been inhibited to a sufficient extent to permit accumulation of acetylcholine. It is suggested that the accumulation of acetylcholine in the malathion-poisoned insects caused cyclic GMP levels to rise. Cyclic GMP may have a role in cholinergic transmission in normally functioning insect neural tissue. Increased levels of cyclic GMP induced by organophosphate and organocholorine (Bodnaryk, R. P. (1976) Can. J. Biochem. 54, 957-962) insecticides appear to be a vital and previously unrecognized biochemical lesion in insects poisoned by these compounds.  相似文献   

3.
The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents and compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation.  相似文献   

4.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, C.L. and Krishna, G. (1977) Science 196, 1003–1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium.There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 μM concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

5.
Carbamylcholine, caerulein and cholecystokinin octapeptide rapidly increased the cyclic GMP concentration and amylase secretion in isolated guinea pig pancreatic slices. The cyclic GMP concentration was increased eight-fold over the basal concentration in 30 s, with concomitant increase in the rate of amylase secretion. The tissue concentration of cyclic GMP then rapidly declined to a plateau value of approx. 16% of the peak level within 10 min and was maintained at that concentration for the duration of the experiment. We have shown earlier (Kapoor, CL. and Krishna, G. (1977) Science 196, 1003--1005) that the decrease of tissue cyclic GMP was due mainly to the secretion of cyclic GMP into the medium. The cyclic AMP concentration in the tissue was not changed, nor was it secreted into the medium. There was a correlation between the concentration response to various agents for the increase in cyclic GMP concentration and amylase secretion in pancreatic slices. Carbamylcholine increased both the cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 1.5 micrometer concentration. Caerulein and cholecystokinin octapeptide were 5000 times more potent than carbamylcholine in increasing cyclic GMP concentration and amylase secretion; the half-maximal effect was achieved at 0.3 nM concentration. Atropine, which completely inhibited the increase in cyclic GMP and amylase secretion induced by carbamylcholine, did not block the effects of caerulein or cholecystokinin octapeptide. These results suggest that various secretagogues induced amylase secretion by increasing the cyclic GMP concentration, but the mechanism by which cyclic GMP caused amylase secretion remains to be elucidated.  相似文献   

6.
Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function for cyclic GMP in the induction of phosphodiesterase: (i) Folic acid and cyclic AMP increased cyclic GMP levels and induced phosphodiesterase activity. (ii) Cyclic AMP induced both cyclic GMP accumulation and phosphodiesterase activity by binding to a rate receptor. (iii) The effects of chemical modification of cyclic AMP or folic acid on cyclic GMP accumulation and phosphodiesterase induction were closely correlated. (iv) A close correlation existed between the increase of cyclic GMP levels and the amount of phosphodiesterase induced, independent of the type of chemoattractant by which this cyclic GMP accumulation was produced. (v) Computer simulation of cyclic GMP binding to intracellular cyclic GMP-binding proteins indicates that half-maximal occupation by cyclic GMP required the same chemoattractant concentration as did half-maximal phosphodiesterase induction.  相似文献   

7.
C C Wu  S J Chen  M H Yen 《Life sciences》1999,64(26):2471-2478
Recent studies have shown that nitric oxide (NO) modulates K+-channel activity which play an important role in controlling vascular tone. The formation of cyclic guanosine 3',5'-monophosphate (cyclic GMP) has also been recognized to be associated with the vasodilatory effect of NO. Both cyclic GMP and NO increase whole-cell K+-current by activating Ca2+-activated K+-channels (K(Ca)-channels). Here, we show evidence that activators of soluble guanylyl cyclase sodium nitroprusside or 3-morpholino-sydnonimine (SIN-1), and an analogue of cyclic GMP 8-bromo-cyclic GMP enhance the relaxation induced by cromakalim which is blocked by glibenclamide (a specific inhibitor of ATP-sensitive K+-channels [K(ATP)-channels]), and partially attenuated by methylene blue (an inhibitor of cyclic GMP formation). However, this is not due to the increase of cyclic GMP level by cromakalim itself because the relaxation induced by cromakalim is not associated with the changes of cyclic GMP level formed in the aortic smooth muscle. Thus, it is most likely that cyclic GMP also modulates activity of K(ATP)-channels, in addition to K(Ca)-channels, in the rat aorta.  相似文献   

8.
Cyclic GMP and cyclic AMP levels in eight different rat tissues were examined after animlas were immersed in liquid nitrogen. In order of decreasing concentration, cerebellu, kidney, lung and cerebral cortex contained the greatest quantities fo cyclic GMP. These tissues also contained relatively high concentrations of cyclic AMP. Compared to values in animals which were sacrificed in liquid nitrogen, levels of both nucleotides in many of the tissues examined were altered by decapitation or anesthesia with ether and pentobarbital. Decapitation increased the levels of both cyclic GMP and cyclic AMP in cerebellum, lung, heart, liver and skeletabl muscle. However, decapitation increased only cyclic AMP in cerebral cortex and kidney. Our previously reported high level of cyclic GMP in lung was attributed to ether anesthesia and surgical removal which increased the cyclic GMP content in lung, heart, testis and skeletal muscle. The effect of ether on cyclic GMP levels in lung and heart was blocked by pretreatment of animals with atropine which indicated that cholinergic agents increase cyclic GMP content in these tissues. Acetylcholine and carbachol in the presence of theophylline increased the accumulation of cyclic GMP in incubations of rat lung minces. Increases in cyclic GMP and cyclic AMP levels in cerebellum with ether anesthesia were prevented if rats were immersed in liquid nitrogen after anesthesis with ether. Anesthesia with pentobarbital decreased the levels of cyclic GMP in cerebellum and kidney and increased the nucleotide in heart, liver, testis and skeletal muscle compared to levels in tissues from animals immersed in liquid nitrogen. However, pentobarbital increased cyclic AMP levels in cerebellum and cerebral cortex and decreased the nucleotide in liver, kidney, testis and skeletal muscle. These studies provide a possible explanation for the variability in in vivo levels of cyclic GMP and cyclic AMP which have been previously reported. In addition, these studies support the hypothesis that the synthesis and degradation of cyclic AMP and cyclic GMP are regulated independently and not necessarily in a parallel or reciprocal manner. These studies also suggest that the increase accumulation of one cyclic nucleotide has no major effect on the synthesis and/or metabolism of the other; however, such interactions cannot be entirely excluded from the results of this study.  相似文献   

9.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

10.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

11.
Stimulation of human peripheral blood lymphocytes (PBL) with pokeweed mitogen (PWM) induced consistent increases of intracellular levels of cyclic AMP and cyclic GMP within 15 min. Increases of cyclic AMP were observed in both B and T lymphocyte populations, but increase of cyclic GMP was observed only in the B lymphocyte population. The addition of anti-mu antibody to B cells abolished PWM-induced increase of cyclic GMP without any effect on cyclic AMP response. Anti-delta antibody did not show any inhibitory or stimulatory effect on PWM-induced increase of cyclic GMP or cyclic AMP. Pretreatment of B cells with anti-mu antibody at 37 degrees C for 1 hr inhibited PWM-induced increase of cyclic GMP, whereas pretreatment with anti-mu antibody at 4 degrees C did not show any inhibitory effect on PWM-induced increase of cyclic GMP. The effect of anti-mu-pretreatment was reversible and pretreated cells were recovered from the inhibitory effect of anti-mu antibody after 36 hr culture.  相似文献   

12.
We determined cyclic AMP and cyclic GMP levels in 18 regions of rat brain following administration of two different centrally active cholinergic agonists. Administration of oxotremorine (2 mg/Kg IP), a muscarinic agonist, 10 minutes prior to sacrifice by exposure to high power microwave irradiation resulted in significant increases in cyclic GMP in cerebellum, brainstem, hippocampus, midbrain, thalamus and septal region. Cyclic AMP levels were significantly elevated in substantia nigra, nucleus interpeduncularis, hypothalamus, brainstem, midbrain and in the pituitary where a greater than tenfold increase was observed. Levels of plasma prolactin and corticosterone did not differ in any of the groups examined, but growth hormone was significantly lower in animals exposed to oxotremorine. Physostigmine (0.5 mg/Kg) a cholinesterase inhibitor, administered IP also produced elevations in cyclic AMP and cyclic GMP in several of the brain regions examined. These results indicate that multiple regions of the brain are responsive to central cholinergic activation of not only cyclic GMP, but also cyclic AMP system.  相似文献   

13.
In order to ascertain the possible involvement of cyclic GMP in the physiological regulation of the function and development of brown fat of the rat, we have determined its tissue concentration in vivo under a variety of conditions. The steady-state concentration of cyclic GMP in interscapular brown adipose tissue of late foetus was about 80 pmol per g fresh weight. The concentration gradually declined during the first 2 weeks after birth to reach 40 pmol/g fresh weight and then remained constant into adulthood. The cyclic GMP content of brown fat was decreased by chemical sympathectomy and was increased after complete acclimatization of the animals to the cold. The activity of cyclic GMP-dependent protein kinase was also highest in tissue from newborn and cold-acclimatized rats.Both acute cold stress and injection of norepinephrine resulted in a significant but temporary increase in the concentration of cyclic GMP in brown fat, which was followed by a depression of the concentration below values in untreated animals. The concentration of cyclic AMP showed similar pattern of changes. Injection of phenylephrine was followed by a pronounced increase in the cyclic GMP content of brown fat, with little effect upon cyclic AMP. Injection of isoproterenol raised the content of cyclic AMP but not that of cyclic GMP. The ability of norepinephrine and phenylephrine to increase the concentration of cyclic GMP was abolished by pre-treatment of the animals with phenoxybenzamine, but not by pre-treatment with propranolol. Conversely, propranolol but not phenoxybenzamine abolished the effects of norepinephrine on the cyclic AMP content of the tissue.Thus we have established the responsiveness of the cyclic GMP content of brown fat to physiological and pharmacological stimuli and have evidence of the possible participation by cyclic GMP in the α-adrenergic stimulation and in the regulation of proliferative processes in the tissue.  相似文献   

14.
Cells of Dictyostelium discoideum respond to extracellular cyclic AMP with marked changes in intracellular cyclic GMP levels and light scattering. In this work, defined temporal increases in cyclic AMP were produced by the continuous addition of cyclic AMP to agitated suspensions of cells; concomitant hydrolysis of cyclic AMP by the cells subsequently established a constant, steady state concentration. The cells responded to the initial increase in extracellular cyclic AMP with a rapid increase in the intracellular cyclic GMP concentration and a rapid decrease in light scattering. At cyclic AMP input rates of 0.5-5 nM X s-1, the fast reactions of cyclic GMP and light scattering had already relaxed while the cyclic AMP concentration in the cell suspension was still increasing. The cells responded to constant concentrations of cyclic AMP with constant elevated cyclic GMP concentrations and constant decreased levels of light scattering. Our results are consistent with the existence of two types of perception systems, one of which adapts to constant stimuli and one of which does not adapt.  相似文献   

15.
In dispersed acini from guinea-pig pancrease several pancreatic secretagogues increased calcium outflux, cyclic GMP and amylase secretion, whereas nitroprusside and hydroxylamide increased cyclic GMP but did not increase calcium outflux or amylase secretion and did not alter the action of secretagogues on calcium outflux or amylase secretion. Secretin and vasoactive intestinal peptide increased cyclic AMP and increased secretion but did not alter cyclic GMP. Nitroprusside and hydroxylamine did not alter cyclic AMP or the action of secretin or vasoactive intestinal peptide on cyclic AMP and enzyme secretion. Agents that increased cyclic GMP also caused release of the nucleotide into the extracellular medium; however, this release did not correlate with secretion of amylase into the extracellular medium. 8-Bromo cyclic AMP as well as 8-bromo cyclic GMP increased enzyme secretion and potentiated the increase in enzyme secretion caused by cholecystokinin or carbachol. The increase in amylase secretion caused by vasoactive intestinal peptide or secretin plus either of the cyclic nucleotide derivatives was the same as that caused by the peptide alone. These results indicate that cyclic GMP does not mediate the action of secretagogues on pancreatic enzyme secretion, that the release of cyclic GMP into the extracellular medium does not occur by exocytosis and that the increase in enzyme secretion caused by 8-bromo cyclic GMP results from its stability to mimic the action of endogenous cyclic AMP.  相似文献   

16.
An assay method based on the ability of high concentrations of Mg2+ to stimulate phosphorylation of histone in the presence of low concentrations of ATP was developed for the measurement of cyclic GMP-dependent protein kinase activity ratios (activity -cyclic GMP/activity + cyclic GMP). In tissues which contain only trace amounts of cyclic GMP-dependent protein kinase, the basal activity ratios were high due to interference from a cyclic nucleotide-independent protein kinase. In order to study the regulation of the cardica cyclic GMP-dependent protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal or elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated witth the acetylcholine-induced protein kinase, factors affecting the equilibrium between the active and inactive forms of the enzyme were determined. Since the rate of dissociation of cyclic GMP from its binding site(s) was relatively slow at 0–4°C at pH 7.0, the amount of time required to process tissue samples was the major limiting factor for preserving the equilibrium between active and inactive forms of the enzyme. Dilution of heart tissue extracts at 0–4°C did not significantly alter the activity ratio of the enzyme under conditions of basal elevated cyclic GMP levels. Experiments using charcoal or exogenous cyclic GMP-dependent protein kinase in the homogenizing medium demonstrated that the release of sequestered cyclic GMP was not responsible for the elevation of the cyclic GMP-dependent protein kinase activity ratios by agents like acetylcholine. Therefore, the assay reflected in part, at least, the retention of kinase-bound cyclic GMP in the tissue extracts. The effects of acetylcholine and sodium nitroprusside on cyclic GMP levels, the cyclic GMP-dependent protein kinase activity ratios, and force of contraction were studied in the perfused rat heart. Both agents produced rapid, dose-dependent increases in cardiac cyclic GMP. Optimal concentrations of acetylcholine produced a 2–3-fold increase in the levels of cyclic GMP and an increase in the cyclic GMP-dependent protein kinase activity ratio. No significant effect of acetylcholine on cyclic nucleotide-independent protein kinase activity was observed. Associated with the acetylcholine-induced increase in cyclic GMP and the cyclic GMP-dependent protein kinase activity ratio was a reduction in the force of contraction. In contrast, nitroprusside produced little or no increase in the cyclic GMP-dependent protein kinase activity ratio despite increasing the level of cyclic GMP 8–10-fold. Nitroprusside also had no effect on contractile force. In combination, nitroprusside and acetylcholine produced additive effects on cyclic GMP levels, but protein kinase activation and force of contraction were similar to those seen with acetylcholine alone. The results suggest that the cyclic GMP produced by acetylcholine in the rat heart is coupled to activation of the cyclic GMP-dependent protein kinase, while that produced by nitroprusside is not.  相似文献   

17.
The time course of corticotropin-induced steroidogenesis and changes in intracellular cyclic AMP and cyclic GMP levels were investigated in isolated bovine adrenocortical cells prepared by trypsin digestion. Corticotropin produced a peak rise in cyclic AMP during the first 5 min of stimulation and enhanced steroid production after 15 min. Corticotropin also caused a decrease in cortical cyclic GMP at 5 min; this decrease in cyclic GMP reverted to a 2-3 fold increase at 15-30 min which gradually subsided by 60 min. A steroidogenic concentration of prostaglandin E2 also produced an elevation in the levels of both nucleotides, but the rise in cyclic GMP preceded the rise in cyclic AMP. These results suggest that the relative amounts of cyclic AMP and cyclic GMP, rather than the absolute levels of cyclic AMP, may be a key factor in the regulation of steroidogenesis.  相似文献   

18.
The time course of corticotropin-induced steroidogenesis and changes in intracellular cyclic AMP and cyclic GMP levels were investigated in isolated bovine adrenocortical cells prepared by trypsin digestion. Corticotropin produced a pea a peak rise in cyclic AMP during the first 5 min of stimulation and enhanced steroid production after 15 min. Corticotropin also caused a decrease in cortical cyclic GMP at 5 min; this decrease in cyclic GMP reverted to a 2–3 fold increase at 15–30 min which gradually subsided by 60 min. A steroidogenic concentration of prostaglandin E2 also produced an elevation in the levels of both nucleotides, but the rise in cyclic GMP preceded the rise incyclic AMP. These results suggest that the relative amount of cyclic AMP and cyclic GMP, rather than the absolute levels of cyclic AMP, may be a key factor in the regulation of steroidogenesis.  相似文献   

19.
Arachidonic acid- or collagen-induced aggregation was accompanied by a progressive elevation in the level of cyclic GMP in washed human platelets with no significant alteration in the concentration of cyclic AMP. The extent of the increase in cyclic GMP was proportional to the concentration of arachidonic acid added. Enhanced accumulation of cyclic GMP produced by arachidonic or collagen was prevented by prior exposure of platelets to aspirin or indomethacin. Prostaglandin endoperoxide G2 caused platelet aggregation and an increase in cyclic GMP concentration; neither event was blocked by prostaglandin synthesis inhibitors. These results indicate that the generation of prostaglandin endoperoxides is a step in the sequence of events in platelet aggregation leading to the enhanced accumulation of cyclic GMP.  相似文献   

20.
Abstract— Muscarinic cholinergic agonists increase cyclic GMP levels in a number of neural tissues. Since the rat hippocampus receives a cholinergic innervation from the septum, we decided to test whether cyclic GMP levels of the rat hippocampus are increased by bethanechol, a muscarinic cholinergic agonist. Incubation of rat hippocampi with varying concentrations of bethanechol showed that the increase in cyclic GMP levels is concentration-dependent, 500 pwbethanechol producing a maximum increase of 490% over control values. The bethanechol-evoked increases were blocked by the muscarinic antagonist atropine, and were calcium-dependent. It is concluded that at least some of the cells projecting to the rat hippocampus form muscarinic cholinergic synapses which act via a cyclic GMP-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号