首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Ex-FABP, extracellular fatty acid binding protein, is a 21 kDa lipocalin expressed in hypertrophic cartilage, muscle and heart during chick embryo development and in granulocytes. Ex-FABP synthesis was increased in chondrocyte and myoblast cultures by inflammatory agents (LPS; IL6) and repressed by antiinflammatory agents. Expression of Ex-FABP and specific gelatinases is paralleled in hypertrophic cartilage; LPS specifically induced high molecular weight gelatinase ( > 200 kDa). LPS-treated hypertrophic chondrocytes showed increased chemotactic activity for endothelial cells paralleled by increased expression of transferrin. A high amount of Ex-FABP was expressed in adult pathological cartilage both in dyschondroplastic and osteoarthritic chickens. Controls were negative. Ex-FABP could represent a stress protein physiologically expressed in tissues where active remodelling is taking place during development and in tissues characterized by an acute phase response due to pathological conditions. We also suggest that during endochondral bone formation other responses characteristic of a local inflammatory status, such as gelatinase production and angiogenic factor secretion, are "physiologically" activated.  相似文献   

5.
Ex-FABP, an extracellular fatty acid binding lipocalin, is physiologically expressed by differentiating chicken chondrocytes and myoblasts. Its expression is enhanced after cell treatment with inflammatory stimuli and repressed by anti-inflammatory agents, behaving as an acute phase protein. Chicken liver fragments in culture show enhanced protein expression after bacterial endotoxin treatment. To investigate the biological role of Ex-FABP, we stably transfected proliferating chondrocytes with an expression vector carrying antisense oriented Ex-FABP cDNA. We observed a dramatic loss of cell viability and a strong inhibition of cell proliferation and differentiation. When chondrocytes were transfected with the antisense oriented Ex-FABP cDNA we observed that Ex-FABP down-modulation increased apoptotic cell number. Myoblasts transfected with the same expression vector showed extensive cell death and impaired myotube formation. We suggest that Ex-FABP acts as a constitutive survival protein and that its expression and activation are fundamental to protect chondrocytes from cell death.  相似文献   

6.
Galline Ex-FABP was identified as another candidate antibacterial, catecholate siderophore binding lipocalin (siderocalin) based on structural parallels with the family archetype, mammalian Siderocalin. Binding assays show that Ex-FABP retains iron in a siderophore-dependent manner in both hypertrophic and dedifferentiated chondrocytes, where Ex-FABP expression is induced after treatment with proinflammatory agents, and specifically binds ferric complexes of enterobactin, parabactin, bacillibactin and, unexpectedly, monoglucosylated enterobactin, which does not bind to Siderocalin. Growth arrest assays functionally confirm the bacteriostatic effect of Ex-FABP in?vitro under iron-limiting conditions. The 1.8?? crystal structure of Ex-FABP explains the expanded specificity, but also surprisingly reveals an extended, multi-chambered cavity extending through the protein and encompassing two separate ligand specificities, one for bacterial siderophores (as in Siderocalin) at one end and one specifically binding copurified lysophosphatidic acid, a potent cell signaling molecule, at the other end, suggesting Ex-FABP employs dual functionalities to explain its diverse endogenous activities.  相似文献   

7.
Extracellular Fatty Acid Binding Protein (Ex-FABP) is a 21 kDa lipocalin, expressed during chicken embryo development in hypertrophic cartilage, in muscle fibres and in blood granulocyte. The protein selectively binds with high affinity fatty acids, preferably long chain unsaturated fatty acids in chondrocyte and myoblast cultures Ex-FABP expression is increased by inflammatory-agents and repressed by anti-inflammatory-agents. In adult cartilage, Ex-FABP is expressed only in pathological conditions such as in dyschondroplastic and osteoarthritic chicken cartilage. We propose that lipocalin Ex-FABP represents a stress protein physiologically expressed in tissues where active remodelling is taking place during development and also present in tissues characterized by a stress response due to pathological conditions.  相似文献   

8.
Extracellular fatty acid binding protein (Ex-FABP) is a 21 kDa lipocalin specifically binding fatty acids, expressed during chicken embryo development in hypertrophic cartilage, in muscle fibers and in blood granulocytes. In chondrocyte and myoblast cultures Ex-FABP expression is increased by inflammatory agents and repressed by anti-inflammatory agents. In adult cartilage Ex-FABP is expressed only in pathological conditions such as in dyschondroplastic and osteoarthritic chickens. The possible mammalian counterpart is the Neu-related lipocalin (NRL), a lipocalin overexpressed in rat mammary cancer; NRL is homologous to the human neutrophil gelatinase associated lipocalin (NGAL) expressed in granulocytes and in epithelial cells in inflammation and malignancy and to the Sip24 (super-inducible protein 24), an acute phase lipocalin expressed in mouse after turpentine injection. Immunolocalization and in situ hybridization showed that NRL/NGAL is expressed in hypertrophic cartilage, in forming skeletal muscle fibers and in developing heart. In adult cartilage NRL/NGAL was expressed in articular cartilage from osteoarthritic patients and in chondrosarcoma. Moreover, NRL was induced in chondrocyte and myoblast cultures by an inflammatory agent. We propose that these lipocalins (Ex-FABP, NRL/NGAL, Sip24) represent stress proteins physiologically expressed in tissues where active remodeling is taking place during development and also present in tissues characterized by an acute phase response due to pathological conditions.  相似文献   

9.
10.
Tibial dyschondroplasia (TD) appears to involve a failure of the growth plate chondrocytes within growing long bones to differentiate fully to the hypertrophic stage, resulting in a mass of prehypertrophic chondrocytes which form the avascular TD lesion. Many biochemical and molecular markers of chondrocyte hypertrophy are absent from the lesion, or show reduced expression, but the cause of the disorder remains to be identified. As differentiation to the hypertrophic state is impaired in TD, we hypothesised that chondrocyte genes that are differentially expressed in the growth plate should show altered expression in TD. Using differential display, four genes, B-cadherin, EF2, HT7 and Ex-FABP were cloned from chondrocytes stimulated to differentiate to the hypertrophic stage in vitro, and their differential expression confirmed in vivo. Using semi-quantitative RT-PCR, the expression patterns of these genes were compared in chondrocytes from normal and TD growth plates. Surprisingly, none of these genes showed the pattern of expression that might be expected in TD lesion chondrocytes, and two of them, B-cadherin and Ex-FABP, were upregulated in the lesion. This indicates that the TD phenotype does not merely reflect the absence of hypertrophic marker genes, but may be influenced by more complex developmental mechanisms/defects than previously thought.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Chondrogenic differentiation is a multistep process entailing the sequential activation and inhibition of the expression of a number of genes. To identify genes preferentially expressed at the hypertrophic stage rather than early differentiation stages of chicken chondrocyte differentiation, a subtracted cDNA library was generated. Here we describe the characterization of a cDNA isolated from this library and that of the encoded protein referred to as Chondrocyte Protein with a Poly-proline Region (CHPPR).The cDNA coding for CHPPR hybridizes with a 3.0-kb mRNA expressed at extremely low levels in dedifferentiated chondrocytes, cultured in adherent conditions, at low levels in differentiating chondrocytes and at very high levels in hypertrophic chondrocytes in suspension culture. The Parathyroid Hormone peptide [PTH (1-34)] enhances accumulation of CHPPR mRNA in cultured chondrocytes. This 3.0-kb mRNA is also detectable in several chick embryo tissues but at a lower extent when compared to that present in cartilage and in hypertrophic chondrocytes. The CHPPR cDNA has a complete open reading frame coding for a polypeptide with a calculated mass of 35.6 kDa containing a proline-rich region with a PPLP motif (single-letter amino acid code). We demonstrate by Western blot analysis that two CHPPR isoforms are detected in the cell lysates from cultured chondrocytes when they are not in the culture medium; furthermore, we find that the CHPPR gene is expressed in vivo by chick embryo chondrocytes at higher levels in the prehypertrophic and hypertrophic zones.  相似文献   

18.
19.
Glucocorticoids (GC) are commonly used anti-inflammatory drugs, but long-term use can result in marked growth retardation in children due to their actions on growth plate chondrocytes. To gain an insight into the mechanisms involved in GC-induced growth retardation, we performed Affymetrix microarray analysis of the murine chondrogenic cell line ATDC5, incubated with 10(-6) M dexamethasone (Dex) for 24 h. Downregulated genes included secreted frizzled-related protein and IGF-I, and upregulated genes included serum/GC-regulated kinase, connective-tissue growth factor, and lipocalin 2. Lipocalin 2 expression increased 40-fold after 24-h Dex treatment. Expression increased further after 48-h (75-fold) and 96-h (84-fold) Dex treatment, and this response was Dex concentration dependent. Lipocalin 2 was immunolocalized to both proliferating and hypertrophic growth plate zones, and its expression was increased by Dex in primary chondrocytes at 6 h (3-fold, P < 0.05). The lipocalin 2 response was blocked by the GC-receptor antagonist RU-486 and was increased further by the protein synthesis blocker cycloheximide. Proliferation in lipocalin 2-overexpressing cells was less than in control cells (49%, P < 0.05), and overexpression caused an increase in collagen type X expression (4-fold, P < 0.05). The effects of lipocalin 2 overexpression on chondrocyte proliferation (64%, P < 0.05) and collagen type X expression (8-fold, P < 0.05) were further exacerbated with the addition of 10(-6) M Dex. This synergistic effect may be explained by a further increase in lipocalin 2 expression with Dex treatment of transfected cells (45%, P < 0.05). These results suggest that lipocalin 2 may mediate Dex effects on chondrocytes and provides a potential novel mechanism for GC-induced growth retardation.  相似文献   

20.
Deletion analysis of the human PRL promoter in endometrial stromal cells decidualized in vitro revealed a 536-bp enhancer located between nucleotide (nt) -2,040 to -1,505 in the 5'-flanking region. The 536-bp enhancer fragment ligated into a thymidine kinase (TK) promoter-luciferase reporter plasmid conferred enhancer activity in decidual-type cells but not nondecidual cells. DNase I footprint analysis of decidualized endometrial stromal cells revealed three protected regions, FP1-FP3. Transfection of overlapping 100-bp fragments of the 536-bp enhancer indicated that FP1 and FP3 each conferred enhancer activity. Gel shift assays indicated that both FP1 and FP3 bind activator protein 1 (AP-1), and JunD and Fra-2 are components of the AP-1 complex in decidual fibroblasts. Mutation of the AP-1 binding site in either FP1 or FP3 decreased enhancer activity by approximately 50%, while mutation of both sites almost completely abolished activity. Coexpression of the 536-bp enhancer and A-fos, a dominant negative to AP-1, decreased enhancer activity by approximately 70%. Conversely, coexpression of Fra-2 in combination with JunD or c-Jun and p300 increased enhancer activity 6- to 10-fold. Introduction of JunD and Fra-2 into nondecidual cells is sufficient to confer enhancer activity. JunD and Fra-2 protein expression was markedly increased in secretory phase endometrium and decidua of early pregnancy (high PRL content) compared with proliferative phase endometrium (no PRL). These investigations indicate that the 5'-flanking region of the human PRL gene contains a decidua-specific enhancer between nt -2,040/-1,505 and AP-1 binding sites within this enhancer region are critical for activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号