首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of substrate on stabilities of native (NA) and three kinds of immobilized yeast alcohol dehydrogenase (IMA), namely PGA (the carrier; porous glass), SEA (agarose gel) prepared covalently, and AMA (anion-exchange resin) prepared ionically, were studied. The following results were obtained. (1) The deactivations of NA and IMA free from the substrate or in the presence of ethanol obey the first-order kinetics, whereas, in the presence of butyraldehyde, their deactivation behaviors are explained on the basis of coexistence of two components of YADHs, namely the liable E1, and the comparatively stable E2, with different first-order deactivation constants. (2) A few attempts for stabilization of IMA were carried out from the viewpoint of the effects of crosslinkages among the subunits of YADH for PGA and the multibonding between the carrier and enzyme for SEA. The former is effective for the stabilization, whereas the later is not.  相似文献   

2.
Taking the hydrolysis of sucrose by invertase immobilized on anion-exchange resin as an example, the effects of mass-transfer resistance on the apparent stability of immobilized enzyme (IME) and the optimal policy for an IME reaction in a fixed-bed reactor have been studied theoretically and experimentally. The following results were obtained: (1) The effect of mass-transfer resistance on the effective deactivation rate of IME is summarized in two parameters concerning the intraparticle diffusion alpha(p) and the interparticle alpha(f). (2) At a constant processed amount of raw materials, there exists an optimal flow rate of reaction fluid to enhance the reactor performance while the mass-transfer resistance shifts the optimal point. (3) The intrinsic deactivation rate of IME has been estimated from the relationship between the fractional conversion at the reactor outlet and the operation time.  相似文献   

3.
Yeast alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1), a potentially useful enzyme for cofactor regeneration processes, was covalently immobilized in a multipoint fashion by activation with acryloyl chloride and subsequent copolymerization in a polyacrylamide gel. Several properties such as the activity and stability were systematically studied for the free enzyme, the acryloate-enzyme and the immobilized enzyme. The activation energy was significantly lowered upon immobilization. The thermal stability of the immobilized enzyme was, however, greatly increased. But its maximum activity was observed at a lower temperature. These results suggest an important effect of the diffusional restrictions and of the mode of activation and immobilization on the activity and the stability of the enzyme.  相似文献   

4.
The effect of the intraparticle diffusion resistance on the apparent stability of the immobilized enzyme suffering from the first-order deactivation has been studied quantitatively. A general expression for the relationship between the decreasing observed enzymatic reaction rate and the intrinsic enzyme deactivation rate has been introduced. The method to estimate the intrinsic deactivation rate constant also has been proposed. Using the invertases immobilized on a anion-exchange resin, the theory proposed in this work has been verified experimentally.  相似文献   

5.
Alcohol dehydrogenase from yeast was partially purified by heat treatment (70°C, 30 min) and immobilized on porous glass, Enzacryl-TI0 and hornblende. The stabilities of these preparations were studied at 30°C and in the case of Enzacryl-TI0 and hornblende at 50°C also. These stabilities were compared with those of immobilized alcohol dehydrogenase from yeast cytosol. In all cases the mitochondrial enzyme provided the more stable bound enzyme conjugates. However, at 50°C the soluble mitochondrial enzyme was more stable than any of the immobilized derivatives: half-life values were 40, 14 and 8 h for the soluble, Enzacryl-TI0 and hornblende samples, respectively.  相似文献   

6.
Yeast alcohol dehydrogenase (YADH) was immobilized covalently on Fe3O4 magnetic nanoparticles (10.6 nm) via carbodiimide activation. The immobilization process did not affect the size and structure of magnetic nanoparticles. The YADH-immobilized magnetic nanoparticles were superparamagnetic with a saturation magnetization of 61 emu g–1, only slightly lower than that of the naked ones (63 emu g–1). Compared to the free enzyme, the immobilized YADH retained 62% activity and showed a 10-fold increased stability and a 2.7-fold increased activity at pH 5. For the reduction of 2-butanone by immobilized YADH, the activation energies within 25–45 °C, the maximum specific activity, and the Michaelis constants for NADH and 2-butanone were 27 J mol–1, 0.23 mol min–1 mg–1, 0.62 mM, and 0.43 M, respectively. These results indicated a structural change of YADH with a decrease in affinity for NADH and 2-butanone after immobilization compared to the free enzyme.  相似文献   

7.
Making use of the unusual stability of yeast alcohol dehydrogenase in the presence of ethanol, a simple, rapid procedure for isolating this enzyme in high yield is presented. Once-crystallized enzyme is obtained within 5 h of commencing the procedure; this is undegraded and substantially free of proteolytic activity.  相似文献   

8.
9.
The incubation of yeast alcohol dehydrogenase with formaldehyde in the presence of NaBH4 methylates lysine residues to form ?N,?N-dimethyl lysine with a concurrent decrease in enzymic activity which is not alleviated by the presence of coenzymes. The modification causes structural change(s) in yeast alcohol dehydrogenase as evidenced by a hyperchromic shift in the uv spectrum, the sensivitity to heat inactivation, the reactivity to sulfhydryl reagents, and a change in Stokes' radius. Kinetic studies indicate that the reduced activity of the methylated enzyme to oxidize alcohols is associated with decreased maximum velocities by retarding the interconversion of the ternary complexes. The catalytic efficiency of the control enzyme to oxidize primary alcohols is affected by the steric interaction which is absent in the methylated enzyme.  相似文献   

10.
Crystalline alcohol dehydrogenase from baker's yeast   总被引:61,自引:0,他引:61  
  相似文献   

11.
12.
13.
14.
15.
Analyses for zinc in high specific activity preparations of yeast alcohol dehydrogenase (YADH) indicate a metal content of 1.8–1.9 moles of zinc per mole of enzyme subunit. This zinc content is observed for YADH prepared from Bakers yeast by recrystallization from Am2SO4 containing 1 mM EDTA, followed by chromatography on DE-52 and Sephadex-G-200. YADH obtained from Boehringer-Mannheim is characterized by a variable specific activity: preparations with Sp. Ac. = 380–400 U/mg contain 1.8–1.9 moles of zinc per mole of subunit. Dialysis of YADH against EDTA (pH 8.5, 25°, under N2) reduces the specific activity and zinc content in an approximately linear fashion down to a Sp. Ac. = 150 U/mg, consistent with the preferential loss of a single, weakly bound zinc per subunit which is essential for catalytic activity. Dialysis of YADH against 1 mM ZnCl2 (pH 6.5–8.5, 25°, under N2) does not lead to an increase in the zinc content of the enzyme, indicating that under these conditions zinc does not bind adventitiously to YADH. Dialysis against 50 mM CoSO4 (pH 5.5, 25°, under N2, 60–90 hr) leads to an exchange of ≈ 40% of the enzyme-bound zinc by cobalt. Our preparations of YADH are consistently characterized by a zinc content of ≈ 2 per subunit and we are unable to reduce the zinc content of YADH by dialysis against EDTA without a concomitant loss in enzyme activity, in contrast to reports of one zinc per subunit [Veillon, C. and Sytkowski, A.J., BBRC 67: 1499 (1975); Vallee, B.L. and Hoch, F.L., Proc. Nat. Acad. Sci. USA 41: 327 (1955)]. The findings reported here, together with the observed structural similarities between YADH and horse liver alcohol dehydrogenase [Jornvall, H., Woenckhaus, C. and Johnscher, G., Eur. J. Biochem. 53: 71 (1975)], suggest a role for zinc at both a structural and catalytic site in YADH.  相似文献   

16.
The primary structure of yeast alcohol dehydrogenase has been compared to the known tertiary structure of the corresponding horse liver enzyme after proper alignment of the two proteins. Possible influences on the subunit conformations of all amino acid exchanges, which affect 75% of the positions, were examined from interactions in the x-ray model of the horse enzyme. In spite of the differences, 90 of 93 strictly internal residues are similar, 18 space-restricted glycine residues are conserved, 16 structurally compensated exchanges occur, all functionally essential residues are similar or identical, and 41 gaps in either sequence may be accommodated in the model. These results show that the general subunit conformations and enzymatic mechanisms of the two enzymes are largely identical. Four surface areas are changed, affecting a region with differing charges, a noncommon loop, a structure around the second zinc atom, and residues at the main dimer interface. Although the subunit interactions in the yeast enzyme cannot be determined, the surface changes probably correlate with differences in quaternary structure between the proteins.  相似文献   

17.
The thiol groups of yeast alcohol dehydrogenase   总被引:5,自引:5,他引:0       下载免费PDF全文
  相似文献   

18.
The interaction of yeast alcohol dehydrogenase (ADH) with the reactive chlorotriazine dye Vilmafix Blue A-R (VBAR) was studied. VBAR was purified to homogeneity on lipophilic Sephadex LH-20 and characterised by reverse phase HPLC and analytical TLC. Incubation of ADH with purified VBAR at pH 8.0 and 37 degrees C resulted in a time-dependent inactivation of the enzyme. The observed rate of enzyme inactivation (kobs) exhibited a non-linear dependence on VBAR concentration from 22 to 106 nmol, with a maximum rate of inactivation (k3) of 0.134 min-1 and kD of 141.7 microM. The inhibition was irreversible and activity could not be recovered by gel-filtration chromatography. The inactivation of ADH by VBAR was competitively inhibited by the nucleotides NADH and NAD+. These results suggest that VBAR acts as an affinity label at the nucleotide binding site of yeast ADH.  相似文献   

19.
Yeast alcohol dehydrogenase (EC 1.1.1.1) is able to catalyze the oxidation of acetaldehyde by NAD+ with a concomitant formation of ethanol, at pH 8.8 and pH 7.1; the stoichiometry of aldehyde oxidation vs. ethanol formation is 2:1. This enzymatic reaction obeys the Michaelis-Menten kinetics and was characterized by a high KM for acetaldehyde (68 mM) and a low kcat (2.3 s–1), at pH 8.8, 22°C. There is no visible burst of NADH during the reaction, from pH 7.1–10.1. Therefore, we have concluded that the enzyme catalyzes an apparent dismutation of two molecules of acetaldehyde into a molecule of acetic acid and a molecule of ethanol.  相似文献   

20.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzed reduction of N,N-dimethyl-4-nitrosoaniline by NADH. The stoichiometry of reaction, steady-state kinetic parameters, and the pH-profile for this reaction were estimated. On that basis, the minimal mechanism of the above reaction was postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号